Курсовая работа: Некоторые уравнения математической физики в частных производных

Подставим во вторую пару дробей, получим

.

Интегрируя последнее уравнение, получим второй первый интеграл

.

Общее решение имеет вид


.

4. Задача

Решение задачу Коши

.

Решение. Найдем два первых интеграла. Составим систему

гиперболический колебание дифференциальный теплопроводность интеграл

Отсюда получим первый интеграл .

Решая уравнение при условии, что , получим второй первый интеграл

Подставим в два первых интеграла:


Исключая из этой пары равенств, получим связь между первыми интегралами . Подставляя вместо и первые интегралы, получим решение задачи Коши:

5. Задача

Решить задачу Коши , .

Решение. Найдем первые интегралы системы уравнений характеристики ; они равны

, .

Найдём, используя начальные данные, связь между первыми интегралами:

.

Подставим первые интегралы и , получим решение:

.


6. Решить уравнение для следующего начального распределения температуры стержня:

.

Решение: Стержень является бесконечным, поэтому решение запишется в виде интеграла Пуассона:

К-во Просмотров: 458
Бесплатно скачать Курсовая работа: Некоторые уравнения математической физики в частных производных