Курсовая работа: Опис та типологія коливань
(3, 4)
Складемо тепер рівняння руху. Для визначення вхідних у них похідних напишемо повний диференціал функції Лагранжа
Оскільки величина суми не залежить, зрозуміло, від позначення індексів підсумовування, міняємо в першому й третьому членах у дужках i на k, a k на i; з огляду на при цьому симетричність коефіцієнтів mik і kik, одержимо:
Звідси видно, що
Тому рівняння Лагранжа
(3,5)
Вони являють собою систему s(i = l, 2, ... , s) лінійних однорідних диференціальних рівнянь із постійними коефіцієнтами.
За загальними правилами рішення таких рівнянь шукаємо s невідомих функцій xk(t) у вигляді
(3,6)
де Аk — деякі, поки невизначені, постійні. Підставляючи (3,6) у систему (3,5), одержуємо по скороченні на систему лінійних однорідних алгебраїчних рівнянь, яким повинні задовольняти постійні Аk:
(3,7)
Для того щоб ця система мала відмінні від нуля рішення, повинен звертатися в нуль її визначник
(3,8)
Рівняння (3,8) -—так зване характеристичне рівняння — являє собою рівняння ступеня s відносно ω2. Воно має в загальному випадку s різних речовинних позитивних корінь ω²a,
а=1, 2, … , s (в окремих випадках деякі із цих корінь можуть збігатися). Певні в такий спосіб величини ωа називаються власними частотами системи.
Речовинність і позитивність корінь рівняння (3,8) заздалегідь очевидні вже з фізичних міркувань. Дійсно, наявність в ω мнимої частини означало б наявність у тимчасовій залежності координат хk (3,6) (а з ними й швидкостей xk ) експоненціальне убутного або експоненціальне зростаючого множника. Але наявність такого множника в цьому випадку неприпустимо, тому що воно привело б до зміни згодом сповненої енергії E=U+T системи в суперечності із законом її збереження.
У т же самому можна переконатися й чисто математичним шляхом. Помноживши рівняння (3,7) на й підсумовував потім по i , одержимо:
звідки
Квадратичні форми в чисельнику й знаменнику цього вираження речовинні в силу речовинності й симетричності коефіцієнтів kik і mik , дійсно,
Вони також істотно позитивні, а тому позитивно й ω2.
Після того як частоти ωа знайдені, підставляючи кожне з них у рівняння (3,7), можна знайти відповідні значення коефіцієнтів Аk. Якщо у всіх кореньі ωа характеристичного рівняння різні, те, як відомо, коефіцієнти Ak пропорційні мінорам визначника (3,8), у якому ω замінена відповідним значенням ωа , позначимо ці мінори через ∆ka. Приватне рішення системи диференціальних рівнянь (3,5) має, отже, вид
де Са — довільна (комплексна) постійна.