Курсовая работа: Опис та типологія коливань

(3,9)

Де ми ввели позначення


(3,10)

Таким чином, зміна кожної з координат системи згодом являє собою накладення s простих періодичних коливань з довільними амплітудами й фазами, які мають цілком певні частоти.

Природно виникає питання, чи не можна вибрати узагальнені координати таким чином, щоб кожна з них робила тільки одне просте коливання? Сама форма загального інтеграла (3,9) указує шлях до рішення цього завдання.

Справді, розглядаючи s співвідношень (3,9) як систему рівнянь із s невідомими величинами Θа , ми можемо, дозволивши цю систему, виразити величини Θ1, Θ2, …, Θs через координати x1, x2, ..., xs . Отже, величини Θа можна розглядати як нові узагальнені координати. Ці координати називають нормальними (або головними), а чинені ними прості періодичні коливання — нормальними коливаннями системи.

Нормальні координати Θа задовольняють, як це виявляється з їхнього визначення, рівнянням

(3,11)

Це значить, що в нормальних координатах рівняння рухи розпадаються на s незалежних друг від друга рівнянь. Прискорення кожної нормальної координати залежить тільки від значення цієї ж координати, і для повного визначення її тимчасової залежності треба знати початкові значення тільки її ж самої й відповідної їй швидкості. Інакше кажучи, нормальні коливання системи повністю незалежні.

Зі сказаного очевидно, що функція Лагранжа, виражена через нормальні координати, розпадається на суму виражень, кожне з яких відповідає одномірному коливанню з однієї із частот ωа , тобто має вигляд


(3,12)

де та — позитивні постійні. З математичної точки зору це означає, що перетворенням (3,9) обидві квадратичні форми - кінетична енергія (3,3) і потенційна (3,2) - одночасно приводяться до діагонального виду.

Звичайно нормальні координати вибирають таким чином, щоб коефіцієнти при квадратах швидкостей у функції Лагранжа були рівні 1/2. Для цього досить визначити нормальні координати (позначимо їх тепер Qa ) рівностями

(3.13)

Тоді

Все викладене мало міняється у випадку, коли серед корінь характеристичного рівняння є кратні коріння. Загальний вид (3,9), (3,10) інтеграли рівнянь рухів залишається таким же (з тим же числом s членів) з тією лише різницею, що відповідним кратним частотам коефіцієнти ∆kа вже не є мінорами визначника, які, як відомо, звертаються в цьому випадку в нуль.

Кожної кратної частоті відповідає стільки різних нормальних координат, яка ступінь кратності, але вибір цих нормальних координат не однозначний. Оскільки в кінетичну й потенційну енергії нормальні координати (з однаковим ωа) входять у вигляді однаково, що перетворяться сум, можна піддати будь-якому лінійному перетворенню, що залишає інваріантної суму квадратів.

Досить просте знаходження нормальних координат для тривимірних коливань однієї матеріальної крапки, що перебуває в постійному зовнішнім полі. Поміщаючи початок декартової системи координат у крапку мінімуму потенційної енергії U(x,y,z), ми одержимо останню у вигляді квадратичної форми змінних х, в, z, а кінетична енергія

(т — маса часток) не залежить від вибору напрямку координатних осей.

Тому відповідним поворотом осей треба тільки привести до діагонального виду потенційну енергію. Тоді

(3,14)

і коливання уздовж осей х, в, z є головними із частотами

В окремому випадку центральносиметричного поля (k1=k2=k3=k, U=kr²/2) ці три частоти збігаються.

Використання нормальних координат дає можливість привести завдання про змушені коливання системи з декількома ступенями волі до завдань про одномірні змушені коливання. Функція Лагранжа системи з обліком діючих на неї змінних зовнішніх сил має вигляд

(3,15)


де L0 — лагранжева функція вільних коливань. Уводячи замість координат хk нормальні координати, одержимо:

К-во Просмотров: 399
Бесплатно скачать Курсовая работа: Опис та типологія коливань