Курсовая работа: Ортогональные полиномы и кривые распределения вероятностей
следовательно, от его дискриминанта
который можно написать в виде
,
вводя параметр
æ.
Или иначе, величину æ можно представить в виде:
æ,
где величины представимы через центральные моменты статистических распределений к-го порядка, которые определяются по формуле
,
где есть
.
Тогда
, .
Через величины можно представить и величины следующим образом [5]:
Величина æ называется критерием Пирсона (каппа Пирсона) и различные значения ее дают нам следующие выводы о корнях уравнения:
А. Если æ, то и уравнение (1) имеет вещественные корни различных знаков.
В. Если 0< æ<1, то и уравнение (1) имеет комплексные корни.
С. Если æ>1, то и уравнение (1) имеет вещественные корни одного знака.
Соответственно этим случаям Пирсон различает три главных типа своих кривых, которые он назвал соответственно типами I, IV и VI. Затем æ может равняться , что дает переходные типы кривых. Наконец, присоединяя некоторые дополнительные условия, мы можем увеличить число переходных типов. Всего система кривых Пирсона заключает 12 типов и нормальную кривую.
В своих разработках Колмогоров А. Н. и Марков А. А. доказали, что любой закон распределения может быть записан в виде одного из двенадцати типов кривых Пирсона, поэтому для решения задачи идентификации используется метод Пирсона.
§ 2. Основные типы кривых Пирсона.
В этом параграфе будут рассмотрены основные типы кривых распределения вероятностей, предложенные и классифицированные Пирсоном.
Тип I.
Пусть æ<0. Тогда
и уравнение (2) имеет вещественные корни различных знаков: , так что можем записать
.
Тогда правая часть уравнения (1) может быть представлена в виде: