Курсовая работа: Ортогональные полиномы и кривые распределения вероятностей
;
После преобразований получаем следующую систему уравнений для нахождения коэффициентов
;
;
……………………
……………………
;
……………………
;
где
Такой подход к нахождению коэффициентов имеет существенный недостаток – при повышении степени полинома хотя бы на единицу приходится переписывать все уравнения и решать систему заново.
Есть другой вариант построения искомого полинома [8].
Пусть будет целая функция от степени , которая обращается в при . Положим
,
где - целые функции степеней , а - коэффициенты.
Пусть теперь сумма первых членов выражения
равняется
,
т.е. .
Каковы в этом случае условия относительно и при которых сумма
имеет наименьшее значение?
Обозначим эту сумму через :
,
и, подставляя в нее
,
составляем обычным способом дифференцирования следующие уравнения: