Курсовая работа: Ортогональные полиномы и кривые распределения вероятностей
с точностью до членов степени
включительно. Здесь есть весовая функция, найденная ранее по методу Пирсона. Но эта дробь, у которой степень числителя на единицу меньше степени знаменателя, при разложении в непрерывную дробь всегда будет в своих неполных частных содержать переменную в первой степени. Следовательно, знаменатели ее подходящих дробей есть функции степеней ; поэтому можно положить
.
Что касается , то его можно приравнять .
Разлагая
в непрерывную дробь вида
,
где и - некоторые постоянные, используем найденные выше свойства функции для определения этих постоянных через данные значения .
Выражения для будет иметь вид:
.
Выражения для коэффициентов будут следующими:
.
Вводя для сокращения обозначение
через , запишем выражение для в таком виде:
.
Для выражение будет иметь вид
.
Что касается величин и , то они равны соответственно
и .
Теперь перейдем к определению коэффициентов в выражении
.
Для получим выражение
.
Это выражение весьма упростится, если мы будем считать отклонениями данных значений аргумента от его средней арифметической так, что . Тогда , а выражение для будет иметь вид
.