Курсовая работа: Ортогональные полиномы и кривые распределения вероятностей

=

Отсюда следует, что

.

На практике в этом разложении мы используем только четыре первых члена, и коэффициенты перед ними есть:

Коэффициенты имеют четкий статистический смысл, а именно: коэффициент , выраженный через , отвечает за асимметрию закона распределения, и коэффициент выраженный через - за эксцесс или дефект кривой распределения.

Свойство (5) есть свойство ортогональности полиномов, т. е. по определению является системой ортогональных полиномов, которая получена по способу Чебышева в предыдущем параграфе [3], [5].

§ 3. Весовые функции и системы ортогональных полиномов.

В общей теории ортогональных полиномов известно, что система ортогональных полиномов называется классической, если она ортогональна относительно весовой функции, которая является решением дифференциального уравнения Пирсона [2], [6]. То есть, здесь прослеживается связь между теорией классических ортогональных полиномов и задачами математической статистики (нахождением закона распределения вероятностей).

Полиномы Чебышева - Эрмита.

Пусть многочлен (2) не имеет корней, тогда уравнение Пирсона (1) после переноса начала координат запишется в виде

,

тогда решение этого уравнения запишется в виде

(6).

Линейным преобразованием независимого переменного

эта функция приводится с точностью до постоянного множителя к весовой функции многочленов Чебышева – Эрмита, которая имеет вид

.

Поскольку умножение весовой функции на постоянную практически не изменяет ортогональные многочлены, то в формуле (6), как и в аналогичных нижеследующих формулах, не нарушая общности, можно полагать . В данном случае ортогональные многочлены с весом (6) выражаются через ортогональные многочлены Чебышева – Эрмита по формуле

.

В этом случае условие ортогональности запишется в виде:

если

Полиномы Чебышева - Лагерра.

Пусть теперь многочлен (2) имеет один корень. Тогда уравнение (1) представимо в виде

.

Тогда его решение запишется в виде

.

Многочлены, ортогональные с таким весом, можно рассматривать как обобщение многочленов Чебышева – Лагерра, ортогональных с весом

К-во Просмотров: 605
Бесплатно скачать Курсовая работа: Ортогональные полиномы и кривые распределения вероятностей