Курсовая работа: Ортогональные полиномы и кривые распределения вероятностей

следовательно, от его дискриминанта

который можно написать в виде

,

вводя параметр

æ.

Или иначе, величину æ можно представить в виде:

æ,

где величины представимы через центральные моменты статистических распределений к-го порядка, которые определяются по формуле

,

где есть

.

Тогда

, .

Через величины можно представить и величины следующим образом [5]:

Величина æ называется критерием Пирсона (каппа Пирсона) и различные значения ее дают нам следующие выводы о корнях уравнения:

А. Если æ, то и уравнение (1) имеет вещественные корни различных знаков.

В. Если 0< æ<1, то и уравнение (1) имеет комплексные корни.

С. Если æ>1, то и уравнение (1) имеет вещественные корни одного знака.

Соответственно этим случаям Пирсон различает три главных типа своих кривых, которые он назвал соответственно типами I, IV и VI. Затем æ может равняться , что дает переходные типы кривых. Наконец, присоединяя некоторые дополнительные условия, мы можем увеличить число переходных типов. Всего система кривых Пирсона заключает 12 типов и нормальную кривую.

В своих разработках Колмогоров А. Н. и Марков А. А. доказали, что любой закон распределения может быть записан в виде одного из двенадцати типов кривых Пирсона, поэтому для решения задачи идентификации используется метод Пирсона.

§ 2. Основные типы кривых Пирсона.

В этом параграфе будут рассмотрены основные типы кривых распределения вероятностей, предложенные и классифицированные Пирсоном.

Тип I.

Пусть æ<0. Тогда

и уравнение (2) имеет вещественные корни различных знаков: , так что можем записать

.

Тогда правая часть уравнения (1) может быть представлена в виде:

К-во Просмотров: 602
Бесплатно скачать Курсовая работа: Ортогональные полиномы и кривые распределения вероятностей