Курсовая работа: Особые свойства Гамма-функции Эйлера
но B(1,1) = 1,следовательно:
Положим в (1.1) .Так как график функции симметрична относительно прямой ,то
и в результате подстановки , получаем
полагая в(1.1) ,откуда , получим
(1.4)
разделяя интеграл на два в пределах от 0 до 1 и от 1 до и применение ко второму интегралу подстановки ,получим
2. Гамма-функция
2.1 Определение
Восклицательный знак в математических трудах обычно означает взятие факториала какого-либо целого неотрицательного числа:
n! = 1·2·3·...·n.
Функцию факториал можно еще записать в виде рекурсионного соотношения:
(n+1)! = (n+1)·n!.
Это соотношение можно рассматривать не только при целых значениях n.
Рассмотрим разностное уравнение
G(z+1)=zG(z).
(2.1)
Несмотря на простую форму записи, в элементарных функциях это уравнение не решается. Его решение называется гамма-функцией. Гамма-функцию можно записать в виде ряда или в виде интеграла. Для изучения глобальных свойств гамма-функции обычно пользуются интегральным представлением.
2.2 Интегральное представление
Перейдем к решению этого уравнения. Будем искать решение в виде интеграла Лапласа:
В этом случае правая часть уравнения (2.1) может быть записана в виде:
Эта формула справедлива, если существуют пределы для внеинтегрального члена. Заранее нам не известно поведение образа [(G)\tilde](p) при p®±¥. Предположим, что образ гамма-функции таков, что внеинтегральное слагаемое равно нулю. После того, как будет найдено решение, надо будет проверить, верно ли предположение о внеинтегральном слагаемом, иначе придется искать G(z) как-нибудь по-другому.