Курсовая работа: Особые свойства Гамма-функции Эйлера
Изучим теперь поведение - функции и построим эскиз ее графика. (см. Приложение 1)
Из выражения для второй производной -функции видно, что
для всех
. Следовательно,
возрастает. Поскольку
, то по теореме Роля на сегменте [1,2]производная
при
и
при
, т. е. Монотонно убывает на
и монотонно возрастает на
. Далее , поскольку
, то
при
. При
из формулы
следует , что
при
.
Равенство , справедливое при
, можно использовать при распространении
- функции на отрицательное значение
.
Положим для, что
. Правая часть этого равенства определена для
из (-1,0) . Получаем, что так продолженная функция
принимает на (-1,0) отрицательные значения и при
, а также при
функция
.
Определив таким образом на
, мы можем по той же формуле продолжить ее на интервал (-2,-1). На этом интервале продолжением
окажется функция, принимающая положительные значения и такая, что
при
и
. Продолжая этот процесс, определим функцию
, имеющею разрывы в целочисленных точках
(см. Приложение 1.)
Отметим еще раз, что интеграл
определяет Г-функцию только при положительных значениях , продолжение на отрицательные значения
осуществлено нами формально с помощью формулы приведения
.
4. Вычисление некоторых интегралов.
Формула Стирлинга
Применим гамма функцию к вычислению интеграла:
где m > -1,n > -1.Полагая , что ,имеем
и на основании (2.8) имеем
(4.1)
В интеграле
Где k > -1,n > 0,достаточно положить
Интеграл
Где s > 0,разложить в ряд
=
где дзетта функция Римана
Рассмотрим неполные гамма функции (функции Прима)