Курсовая работа: Особые свойства Гамма-функции Эйлера
Реферат
Целью данной курсовой работы является изучение особых свойств Гамма-функции Эйлера. В ходе работы была изучена Гамма-функция, её основные свойства и составлен алгоритм вычисления с разной степенью точности. Алгоритм был написан на языке высокого уровня - Си. Результат работы программы сверен с табличным. Расхождений в значениях обнаружено не было.
Пояснительная записка к курсовой работе выполнена в объёме 36 листов. Она содержит таблицу значений гамма-функции при некоторых значениях переменных и тексты программ для вычисления значений Гамма-функции и для построения графика, а также 2 рисунка.
Для написания курсовой работы было использовано 7 источников.
Введение
Выделяют особый класс функций, представимых в виде собственого либо несобственого интеграла, который зависит не только от формальной переменной, а и от параметра.
Такие функции называются интегралами зависящими от параметра. К их числу относятся гамма и бета функции Эйлера.
Бета функции представимы интегралом Эйлера первого рода:
Гамма функция представляется интегралом Эйлера второго рода:
Гамма-функция относится к числу самых простых и значимых специальных функций, знание свойств которой необходимо для изучения многих других специальных функций, например, цилиндрических, гипергеометрических и других.
Благодаря её введению значительно расширяются наши возможности при вычислении интегралов. Даже в случаях, когда конечная формула не содержит иных функций, кроме элементарных, получение её всё же часто облегчает использование функции Г, хотя бы в промежуточных выкладках.
Эйлеровы интегралы представляют собой хорошо изученные неэлементарные функции. Задача считается решённой, если она приводится к вычислению эйлеровых интегралов.
1. Бэта-функци я Эйлера
Бэта – функции определяются интегралом Эйлера первого рода:
=(1.1)
Он представляет функцию от двух переменных параметров и : функцию B . Если эти параметры удовлетворяют условиям и ,то интеграл (1.1) будет несобственным интегралом, зависящим от параметров и ,причём особыми точками этого интеграла будут точки и
Интеграл (1.1) сходятся при .Полагая получим:
= - =
т.e. аргумент и входят в симметрично. Принимая во внимание тождество
по формуле интегрирования почестям имеем
Откуда получаем
=
(1.2)
При целом b = n последовательно применяя (1.2)
Получим
(1.3)
при целых = m,= n, имеем
--> ЧИТАТЬ ПОЛНОСТЬЮ <--