Курсовая работа: Приближенное решение интегрального уравнения

Применяя метод сеток с шагом , найти решение задачи Дирихле в квадрате с вершинами А(0,0), В(0,1), С(1,1), D(1,0).


(20)

1. Метод Либмана

Найдем значения функции в каждом узле:

На АВ

На ВС

На СD

На АD

Запишем формулу метода последовательных приближений

Пусть , тогда получим


Таблица №3

i u1 , 1 u1 , 2 u2 , 1 u2 , 2
0 0 0 0 0
1 2,5 11,4952 7,5 6,4952
2 7,2488 13,744 9,7488 8,744
3 8,3732 15,4934 11,4982 10,4934
4 9,2479 16,21185 12,21665 11,21185
5 9,607125 16,61014 12,61494 11,61014
6 9,806269 16,79952 12,80432 11,79952
7 9,900958 16,89665 12,90145 11,89665

2. Метод Гаусса

Для нахождения точного решения задачи (20) используем метод Гаусса. Для этого решим систему

линейный дифференциальный уравнение


(20*)

Введем замену

К-во Просмотров: 468
Бесплатно скачать Курсовая работа: Приближенное решение интегрального уравнения