Курсовая работа: Распределение Пуассона Аксиомы простейшего потока событий

Функцией правдоподобия называют функцию параметра , определяемую соотношением

. (1.2.1)

Рассмотрим случай дискретной случайной величины X с возможными значениями и вероятностями . Обозначим через наибольшее из возможных значений, которое встречается в выборке, а через ­— абсолютные частоты, с которыми появляются значения в выборке . В этом случае функцией правдоподобия называют функцию параметра , определяемую соотношением

. (1.2.2)

Метод наибольшего правдоподобия состоит в том, что в качестве оценки параметра берется значение, при котором функция правдоподобия достигает своего максимума.

Параметр находят, решая относительно уравнение

. (1.2.3)

Часто вместо (1.2.3) используют уравнение

, (1.2.4)

Если плотность или вероятности зависят от параметров, то наиболее правдоподобную оценку системы параметров получают решением системы уравнений

(1.2.5)

или

. (1.2.6)

Наиболее правдоподобные оценки имеют некоторые замечательные свойства. При достаточно общих условиях они являются состоятельными и асимптотически нормально распределенными (однако не всегда несмещенными), имеют среди всех асимптотически нормально распределенных оценок наибольшую эффективность. Справедливо следующее положение: если вообще имеется эффективная оценка, то она получается методом наибольшего правдоподобия.

Пример 1.2.1 Оценить вероятность некоторого события . Пусть

Решение. ; . Пусть в независимых наблюдениях событие произошло раз, т.е. . Таким образом, имеем , . Отсюда следует, что . Следовательно, есть наиболее правдоподобная оценка параметра . Случайная величина k биномиально распределена, ; Следовательно, — несмещенная оценка вероятности, асимптотически состоятельная и асимптотически нормальная.

Пример 1.2.2. Пусть случайная величина распределена по закону Пуассона с неизвестным параметром . Проведем выборку и получим значения ( – целые числа). Пусть – набольшее из наблюдаемых в выборке чисел, – абсолютные частоты, с которыми числа появляются в выборке ; . Тогда согласно формуле (3.2) . Из соотношения получаем , откуда .

Величина есть, таким образом, правдоподобная оценка для и вместе с тем состоятельная, асимптотически нормально распределенная.

Пример 1.2.3. Пусть случайная величина распределена нормально с параметрами и . Их следует оценить исходя их выборки объема .

Решение. Функция правдоподобия

,

следовательно

.

Согласно (2.5), получаем следующие уравнения для определения и : ; , откуда и . Следовательно, есть наиболее правдоподобная оценка параметров . Мы уже знаем, что не является несмещенной оценкой, а только асимптотически не смещена.

1.3 Точечные оценки

Одной из задач математической статистики явля­ется оценка неизвестных параметров выбранной параметриче­ской модели.

Очень часто в приложениях рассматривают параметриче­скую модель. В этом случае предполагают, что закон рас­пределения генеральной совокупности принадлежит множеству

, где вид функции распределения задан, а век­тор параметровнеизвестен. Требуется найти оценку дляили некоторой функции от него (например, ма­тематического ожидания, дисперсии) по случайной выборке из генеральной совокупности X.

К-во Просмотров: 336
Бесплатно скачать Курсовая работа: Распределение Пуассона Аксиомы простейшего потока событий