Курсовая работа: Распределение Пуассона Аксиомы простейшего потока событий
Функцией правдоподобия называют функцию параметра , определяемую соотношением
. (1.2.1)
Рассмотрим случай дискретной случайной величины X с возможными значениями и вероятностями . Обозначим через наибольшее из возможных значений, которое встречается в выборке, а через — абсолютные частоты, с которыми появляются значения в выборке . В этом случае функцией правдоподобия называют функцию параметра , определяемую соотношением
. (1.2.2)
Метод наибольшего правдоподобия состоит в том, что в качестве оценки параметра берется значение, при котором функция правдоподобия достигает своего максимума.
Параметр находят, решая относительно уравнение
. (1.2.3)
Часто вместо (1.2.3) используют уравнение
, (1.2.4)
Если плотность или вероятности зависят от параметров, то наиболее правдоподобную оценку системы параметров получают решением системы уравнений
(1.2.5)
или
. (1.2.6)
Наиболее правдоподобные оценки имеют некоторые замечательные свойства. При достаточно общих условиях они являются состоятельными и асимптотически нормально распределенными (однако не всегда несмещенными), имеют среди всех асимптотически нормально распределенных оценок наибольшую эффективность. Справедливо следующее положение: если вообще имеется эффективная оценка, то она получается методом наибольшего правдоподобия.
Пример 1.2.1 Оценить вероятность некоторого события . Пусть
Решение. ; . Пусть в независимых наблюдениях событие произошло раз, т.е. . Таким образом, имеем , . Отсюда следует, что . Следовательно, есть наиболее правдоподобная оценка параметра . Случайная величина k биномиально распределена, ; Следовательно, — несмещенная оценка вероятности, асимптотически состоятельная и асимптотически нормальная.
Пример 1.2.2. Пусть случайная величина распределена по закону Пуассона с неизвестным параметром . Проведем выборку и получим значения ( – целые числа). Пусть – набольшее из наблюдаемых в выборке чисел, – абсолютные частоты, с которыми числа появляются в выборке ; . Тогда согласно формуле (3.2) . Из соотношения получаем , откуда .
Величина есть, таким образом, правдоподобная оценка для и вместе с тем состоятельная, асимптотически нормально распределенная.
Пример 1.2.3. Пусть случайная величина распределена нормально с параметрами и . Их следует оценить исходя их выборки объема .
Решение. Функция правдоподобия
,
следовательно
.
Согласно (2.5), получаем следующие уравнения для определения и : ; , откуда и . Следовательно, есть наиболее правдоподобная оценка параметров . Мы уже знаем, что не является несмещенной оценкой, а только асимптотически не смещена.
1.3 Точечные оценки
Одной из задач математической статистики является оценка неизвестных параметров выбранной параметрической модели.
Очень часто в приложениях рассматривают параметрическую модель. В этом случае предполагают, что закон распределения генеральной совокупности принадлежит множеству
, где вид функции распределения задан, а вектор параметровнеизвестен. Требуется найти оценку дляили некоторой функции от него (например, математического ожидания, дисперсии) по случайной выборке из генеральной совокупности X.