Курсовая работа: Распределение Пуассона Аксиомы простейшего потока событий
aa
MX -a MX MX+a
Вероятность попадания Х в этот участок равна
Найдём дисперсию случайной величины Х
Совершенно аналогично доказывается неравенство Чебышева и для дискретной случайной величины, имеющей значения x1, x2, ... с вероятностями p1, p2, ... Тогда вместо интеграла во всех формулах ставится знак суммы, где суммирование ведётся по тем xi , для которых
|xi-MX|³a,
что и требовалось доказать.
Определение. Пусть имеется последовательность чисел
x1, x2, ... , xn , ...
Говорят, что эта последовательность сходится по вероятности к неслучайной величине а, если при неограниченном увеличении п вероятность события
{|Хп-а|< e},
(где e>0 - произвольное малое фиксированное число) стремится к единице, то есть
Иными словами, каковы бы ни были произвольно малые наперёд заданные числа e>0 и d>0 всегда существует N, такое, что при n>N
P{|Xn-a|<e}>1-d
Первая теорема Чебышева (Закон больших чисел). Пусть имеется случайная величина Х с медианой МХ и дисперсией DX. Над этой случайной величиной Х производится п независимых опытов, в результате которых она принимает значения Х1, Х2, ... , Хп (п “экземпляров” случайной величины Х). Пусть
Тогда последовательность сходится по вероятности к MX:
Доказательство. Найдём MYn и DYn :
Применим к случайной величине Yn неравенство Чебышева, в котором положим a равным e, где e>0 — сколь угодно малое, наперёд заданное число.
Как бы ни было мало e, всегда можно выбрать n таким большим, чтобы правая часть последнего неравенства стала меньше сколь угодно малого положительного числа d; следовательно, при достаточно большом п
P{|Yn-MX|³e}<d
ÞP{|Yn-MX|<e}>1-d,