Курсовая работа: Распределение Пуассона Аксиомы простейшего потока событий

Выполнил: Проверил:

ст. группы ******** проф. **********

*****************

Харьков 2007

РЕФЕРАТ

В данном курсовом проекте представлено описание понятий корреляционного момента и его свойств, коэффициента корреляции, случайных событий и их основных числовых характеристик, применения на практике корреляции, а также приведено решение практических задач.

Пояснительная записка состоит из вступления, основной части, выводов, списка литературы.

Записка 28с.

Ключевые слова и выражения:

СЛУЧАЙНАЯ ВЕЛИЧИНА, МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ, ДИСПЕРСИЯ, НАЧАЛЬНЫЙ МОМЕНТ, ЦЕНТРАЛЬНЫЙ МОМЕНТ, КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ, КОРРЕЛЯЦИОННЫЙ МОМЕНТ, ЗАКОН РАСПРЕДЕЛЕНИЯ, СРЕДНЕЕ КВАДРАТИЧНОЕ ОТКЛОНЕНИЕ, ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ, ЗАВИСИМОСТЬ.


СОДЕРЖАНИЕ

Введение………………………………………………………………………..….4

1 Теоретическая часть……….……………………………………………………5

1.1 Доверительные оценки…………………………………………..……….….5

1.2 Метод наибольшего правдоподобия………………………………….…...10

1.3 Точечные оценки…………………………………………………………..13

1.4 Критерий согласия…………………………………………………….……18

1.5 Теорема Чебышева…………………………………………...……….……19

1.6 Понятие доверительного интервала………………...……………….….…23

1.7 Сравнение средних………………………………………………………....25

1.8 Метод минимума X2 ……………………………………………………..…26

1.9 Распределение Пуассона. Аксиомы простейшего потока событий…..…28

2 Практическая часть……………………………………………………………30

Выводы…………………………………………………………………………...37

Список литературы……………………………………………………………...38

ВВЕДЕНИЕ

Теория вероятности – математическая наука, изучающая закономерности в случайных явлениях. При научном исследовании физических и технических задач, часто приходится встречаться с явлениями особого типа, которые принято называть случайными. Случайное явление – это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает несколько по-иному.

Очевидно, что в природе нет ни одного физического явления, в котором не присутствовали бы в той или иной мере элементы случайности. Как бы точно и подробно ни были фиксированы условия опыта, невозможно достигнуть того, чтобы при повторении опыта результаты полностью и в точности совпадали.

Случайности неизбежно сопутствуют любому закономерному явлению. Тем не менее, в ряде практических задач этими случайными элементами можно пренебречь, рассматривая вместо реального явления его упрощенную схему, т.е. модель, и предполагая, что в данных условиях опыта явление протекает вполне определенным образом. При этом из бесчисленного множества факторов, влияющих на данное явление, выделяют самые главные, решающие. Влиянием остальных, второстепенных факторов просто пренебрегают. Изучая закономерности в рамках некоторой теории, основные факторы, влияющие на то или иное явление, входят в понятия или определения, которыми оперирует рассматриваемая теория.

Как и всякая наука, развивающая общую теорию какого-либо круга явлений, теория вероятностей также содержит ряд основных понятий, на которых она базируется. Естественно, что не все основные понятия могут быть строго определены, так как определить понятие – это значит свести его к другим, более известным. Этот процесс должен быть конечным и заканчиваться на первичных понятиях, которые только объясняются.

1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Доверительные оценки

Выборочная оценка, являясь точечной, дает оценочные значения соответствующего параметра из данной выборки, но ничего не дает для точности и достоверности оценки. Такие данные поставляют доверительные оценки. Пусть случайная выборка из генеральной совокупности со случайной величиной , распределение которой зависит от параметра . Пусть – такие функции выборок, что при произвольном выполняется равенство

. (1.1.1)

Тогда случайный интервал называется доверительной оценкой параметра с мерой надежности (с уровнем значимости ).
Если имеется реализация выборки , то реализация доверительной оценки дает доверительный интервал и в большом ряду выборок истинное значение лежит примерно в случаев внутри вычисленных доверительных границ и . Равенство (1.1.1) можно интерпретировать и так: случайный интервал “покрывает” истинный параметр с доверительной вероятностью .

В математической статистике часто используют понятие квантилей, процентных точек (односторонних критических границ и двухсторонних критических границ). Квантилью уровня p или p–квантилью случайной величины с функцией распределения называется решение уравнения .
Односторонней критической границей, отвечающей уровню значимости (процентной точкой уровня ), непрерывной случайной величины с функцией распределения называется значение случайной величины , для которой , или . Нижней и верхней критическими границами, отвечающими уровню значимости непрерывной случайной величины с функцией распределения называются значения случайной величины и , для которых ; ;

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 328
Бесплатно скачать Курсовая работа: Распределение Пуассона Аксиомы простейшего потока событий