Курсовая работа: Рішення лінійних рівнянь першого порядку
Тоді другий рядок буде мати вигляд:
Знайдемо третю й четверту рядки фундаментальної матриці рішень для першого характеристичного числа . Сполучений корінь не породжує нових речовинних лінійно незалежних приватних рішень.
Отримані значення:
Відокремлюючи в ньому речовинні й мнимі частини, одержимо два речовинних рішення, які й становлять першу й другу рядки фундаментальної матриці рішень
Аналогічно інші 3:
Запишемо знайдену фундаментальну матрицю рішень:
Помножимо транспоновану фундаментальну матрицю рішень на вектор вільних коефіцієнтів і одержимо вектор загального рішення вихідної системи:
Зробимо перевірку знайденого рішення в такий спосіб:
Одержуємо нульову матрицю-стовпець:
що показує, що загальне рішення знайдене вірно.
5. Знаходження наближеного рішення у вигляді матричного ряду
Дамо визначення матричному ряду й експонентній функції матриці.
Матричні ряди. Розглянемо нескінченну послідовність матриць , ,. Будемо говорити, що послідовність матриць сходиться до матриці А: , якщо при . З визначення норми треба, що збіжність матриць еквівалентна заелементної збіжності. Матричним рядом називається символ , причому говорять, що цей ряд сходиться до суми , якщо до f сходиться послідовність часткових сум Sk , де
Нехай , тоді можна визначити ступінь матриці А звичайним образом: (k раз). Розглянемо ряд, називаний статечним:
, , ,
де по визначенню покладемо A0 = En .
Експонентна функція матриці. Як приклад розглянемо статечної ряд, рівний:
.
Тому що радіус збіжності відповідного числового ряду