Курсовая работа: Розрахунок типових задач з математичної статистики
Значення функції Лапласа затабульовані, або ж їх можна підрахувати за допомогою математичних пакетів прикладних програм. Хоча з досить високою точністю можна й самому підрахувати значення функції Лапласа, використавши наступну наближену формулу (підінтегральну функцію було розкладено в ряд та взято інтеграл):
.
Функція розподілення імовірності нормального розподілення пов’язана з функцією Лапласа наступним співвідношенням:
, якщо X>0,, якщо X<0.
Знову перейдемо в обчисленнях від загальної до центрованої нормальної величини:
.
Це зафіксовано у п’ятій строчці Таблиці 4.2. Тоді імовірність попадання випадкової величини X в інтервал (Xi ; Xi+1 ) можна виразити через функцію Лапласа так:
,
де значення - нормована нормальна випадкова величина, що відповідає Xi (результат занесено в шосту строчку Таблиці 4.2). Знаючи теоретичну імовірність Pi 0 , можна буде обчислити теоретичну кількість ni 0 попадань випадкової величини X в і-й інтервал (Xi ; Xi+1 ) з Таблиці 4.2 (і результат занесено у відповідну сьому строчку Таблиці 4.2).
Таблиця 4.1 Інтервали розбиття
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
(-5; - 4) | (-4; - 3) | (-3; - 2) | (-2; - 1) | (-1; 0) |
(0; 1) |
(1; 2) |
(2; 3) |
(3; 4) |
(4; 5) |
(5; 6) |
1 | 2 | 1 | 14 | 18 | 22 | 25 | 15 | 1 | 0 | 1 |
0.01 | 0.02 | 0.01 | 0.14 | 0.18 | 0.22 | 0.25 | 0.15 | 0.01 | 0 | 0.01 |
Таблиця 4.2 Розраховані імовірності
I | 1 | 2 | 3 | 4 | 5 |
(Xi ; Xi+1 ) | (-5; - 1) | (-1; 0) |
(0; 1) |
(1; 2) |
(2; 6) |
ni | 18 | 18 | 22 | 25 | 17 |
0.18 | 0.18 | 0.22 | 0.25 | 0.17 | |
(ui ; ui+1 ) | (2.8395; 0.2969) | (0.2969; 0) | (0; 0.2969) | (0.2969; 0.9322) | (0.9322; 3.4752) |
Pi 0 | 0.3798 | 0.1179 | 0.1179 | 0.2059 | 0.1760 |
ni 0 | 38 | 12 | 12 | 21 | 18 |