Курсовая работа: Теорема Дирихле

Содержание

Введение. 2

1. Характеры.. 3

1.1 Определение характера. Основные свойства характеров. 3

1.2 Суммы характеров. Соотношение ортогональности. 6

1.3 Характеры Дирихле. 8

2. L-функция Дирихле. 13

3. Доказательство теоремы Дирихле. 29

Введение

Простые числа расположены в натуральном ряде весьма неравномерно.

Целью данной работы является доказательство следующей теоремы о простых числах в арифметической прогрессии.

Теорема Дирихле. Если разность и первый член арифметической прогрессии есть взаимно простые натуральные числа, то она содержит бесконечное множество простых чисел.

Пусть

mn + l , n = 1,2, …,

прогрессия, удовлетворяющая условию теоремы.

Условие (m , l )=1, наложенные на числа m и e в формулировке теоремы, естественно, поскольку в случае, когда d =(m , l )>1, все члены прогрессии делятся на d и поэтому не являются простыми числами.

Сформулированная теория была впервые высказана Л. Эйлером в 1783 г. В 1798 г. А. Лежандр опубликовал доказательство для четных m , использовавшее, как выяснилось позднее, одну ошибочную лемму.

Полностью доказал теорему в 1837–1839 гг. Петер Густав Лежен-Дирихле (1805–1859), немецкий математик, автор трудов по аналитической теории чисел, теории функций, математической физике.

В 1837 г. вышли две работы Дирихле, посвященные теореме о простых числах в арифметической прогрессии. Они содержали формулировку теоремы в общем виде, однако доказательство приводилось только для случая, когда разность прогрессии есть простое число. В конце второй работы содержится построение характеров для произвольного модуля и некоторые утверждения о том, как можно доказать утверждение L (1,χ)¹0 для неглавных характеров x в одном случае. В 1839 г. Дилихле опубликовал полное доказательство теоремы о простых числах в арифметической прогрессии. С тех пор она носит его имя.

1. Характеры

1.1 Определение характера. Основные свойства характеров

Характером (от греческого хараæτήp-признак, особенность) χ конечной абелевой группы G называется не равная тождественно нулю комплекснозначная функция, определенная на этой группе и обладающая тем свойством, что если, АÎG и BÎG

χ (АВ)= χ (А) χ(В).

Обозначим через Е единичные элементы в группе G и через А-1 обратный элемент для АÎG

Характеры группы G обладают следующими свойствами :

1 . Если Е-единица группы, то для каждого характера χ

χ (Е)=1 (1.1)

Доказательство . Пусть для каждого элемента АÎG справедливо неравенство

c1 (А)=c(АЕ)= c(А) χ (Е)

Из этого равенства получим, что c (Е)¹0. Теперь из равенства

c (Е)= c (ЕЕ)= c (Е) c (Е)=1

следует равенство (1.1)

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 600
Бесплатно скачать Курсовая работа: Теорема Дирихле