Курсовая работа: Теорема Дирихле

Пусть m – положительное целое число. Определим числовые характеры по модулю m. Мы знаем, что j(m) приведенных классов вычетов по модулю m образуют мультипликативную абелеву группу порядка h=j(m). Мы можем, следовательно, рассмотреть характер этой группы. Но определение характера для приведенных классов вычета по модулю mможно перенести на множество целых чисел следующим образом. Положим

c(а)= c(А), если аÎА,

где А – приведенный класс вычетов по модулю m. Тогда очевидно, c(а)= c(b) (modm), и c(ab)= c(а) c(b), если (а, m)=(b, m)=1. Поскольку c(А)¹0 для каждого приведенного класса вычетов А, то c(а)¹0, если (a, m)=1.

Это определение применимо только к целым числам а, которые взаимно просты с m.

Мы можем рассмотреть его на все целые числа, положив

c(а)=0, если (a, m)>1.

Следовательно, характер по модулю m есть арифметическая функция c, обладающая следующими свойствами:

c(а)= c(b), если с=b (modm)

c(ab)= c(a) c(b) для всех целых a и b

c(а)=0, если (a, m)>1

c(а)¹0, если (a, m)=1


Имеется точно j(m) – количество характеров по модулю m, где j(m) – количество положительных целых чисел, не превосходящих m и взаимно простых с m. Они образуют мультипликативную абелеву группу приведенных классов вычета по modm. Единичным элементом этой группы будет главный характер c1, то есть такой характер, что c1 (а)=1, если (а, m)=1. Далее имеем следующее соотношение ортогональности:

= {

= {

Пусть m – положительное целое число. Определим числовые характеры по модулю m. Комплекснозначная функция, определенная для всех целых чисел n, называется числовым характером или характером Дирихле по модулю m, она удовлетворяет следующим условиям:

а) c (n) = 0 тогда и только тогда, когда (n, m) ≠ 1

б) c (n) периодична с периодом m

в) для любых чисел а и b

c (аb) = c (а) c (b)

Функция

c1 (n) = {

является числовым характером и называется главным характером . Остальные числовые характеры по модулю m называются неглавными.

Имеет место следующее утверждение о числовых характерах.

Теорема 1 Существует равно φ(m) числовых характеров по модулю m. Если c = c (n) – числовой характер по модулю m, то:

1) для n, взаимно простых с модулем m, значения c (n) есть корень из 1 степени φ(m).

2) для всех n выполняется неравенство /c (n)/ ≤1

3) Имеет место равенство

{

4) Для каждого целого числа n

К-во Просмотров: 602
Бесплатно скачать Курсовая работа: Теорема Дирихле