Курсовая работа: Уравнение и функция Бесселя

.

Следовательно,

. (10)

Таким образом, операция (состоящая в дифференцировании с последующим умножением на ), примененная к , повышает в этом выражении индекс на единицу и меняет знак. Применяя эту операцию раз, где – любое натуральное число, получаем:

. (10`)

Имеем:

;

Следовательно,

. (11)

Таким образом, операция , примененная к , понижает в этом выражении индекс на единицу. Применяя эту операцию раз, получаем:

. (11`)

Из выведенных формул можно получить некоторые следствия. Используя (10), получим:

; ; .

Отсюда, в частности, следует, что . Используя (11), получим:

; ; .

Почленное сложение и вычитание полученных равенств дает:

, (12)

. (13)

Формула (13) позволяет выразить все бесселевы функции с целыми индексами через , . Действительно, из (13) находим (полагая ):

, (13`)

откуда последовательно получаем:

,

, …………………


3. Бесселевы функции с полуцелым индексом

Бесселевы функции, вообще говоря, являются новыми трансцендентными функциями, не выражающимися через элементарные функции. Исключение составляют бесселевы функции с индексом , где – целое. Эти функции могут быть выражены через элементарные функции.

Имеем:

,

,

следовательно,

К-во Просмотров: 514
Бесплатно скачать Курсовая работа: Уравнение и функция Бесселя