Курсовая работа: Уравнение и функция Бесселя
Но , значит:
. (14)
Далее
,
,
следовательно,
.
Но , поэтому
. (15)
С помощью (10`) находим:
,
а учитывая (14)
,
следовательно, при целом положительном
. (14`)
С помощью (11`) находим:
,
но в силу (15)
,
и, следовательно, при целом положительном
. (15`)
4. Интегральное представление бесселевых функций с целым индексом
Производящая функция системы функций
Рассмотрим систему функций (с любой общей областью определения), пронумерованных с помощью всех целых чисел:
Составим ряд
,
где – комплексная переменная. Предположим, что при каждом (принадлежащем области определения рассматриваемых функций) этот ряд имеет кольцо сходимости, содержащее внутри себя единичную окружность . В частности, это кольцо может представлять собой полную плоскость комплексной переменной без точек 0 и ∞.
Функция
(16)
(где x лежит в области определения функций системы , – внутри кольца сходимости, соответствующего рассматриваемому значению ) называется производящей функцией системы .