Курсовая работа: Вариации при исчислении
Будем считать, что функция u(х) непрерывна и имеет непрерывные производные до второго порядка включительно.
Уравнение Эйлера для функционала (28) будет иметь вид
(1.29)
Таким образом, получили краевую задачу для линейного дифференциального уравнения второго порядка с постоянными коэффициентами. Общее решение уравнения (1.29) будет иметь вид
.
Для нахождения произвольных постоянных с1 и с2 воспользуемся краевыми условиями (1.27). В результате получим
Откуда
Следовательно, функция, дающая минимум функционалу (1.28) при условии (1.27), будет иметь вид
.(1.30)
Пример 2.
В качестве второго примера рассмотрим задачу о брахистохроне.
Как было показано ранее (см. 1.2.1), задача состоит в том, чтобы найти функцию у = u(х), удовлетворяющую условиям:
u(0) = 0, u(а) = b
и сообщающую минимум функционалу
.
В этом случае
.(1.31)
Функция (31) при u = 0 терпит разрыв. Путем несложных рассуждений показывается, что все-таки можно воспользоваться уравнением Эйлера в виде (1.26).
Уравнение (1.26) приводится к виду
(1.32)
Отсюда
.
Положим . Тогда
.
Дифференцируя это выражение, получим . Замена
дает дифференциальное уравнение относительно
Далее
.
Положив , получим