Курсовая работа: Вариации при исчислении
Таким образом, если решение задачи о брахистохроне имеет решение, то это решение есть циклоида.
1.8 Вторая вариация функционала. Достаточное условие минимума функционала
Рассмотрим функцию от вещественной переменной
, считая
и
фиксированными.
Эту функцию разложим в ряд Тейлора:
(1.34)
где R1 – остаточный член ряда.
Выражение
называется второй вариацией функционала J на элементе u.
Разложение (1.34) можно записать в виде
. (1.36)
Пусть функционал J достигает минимума, относительного или абсолютного на элементе u0. Тогда , и формула (1.36) дает
.(1.37)
Из этого соотношения вытекает достаточное условие того, что элемент u0 , удовлетворяющий уравнению Эйлера (экстремаль), сообщает функционалу минимальное значение. Для абсолютного минимума это условие имеет вид (учитывая, что
(1.38)
для относительного минимума оно состоит в том, что неравенство (1.38) выполняется, когда элемент достаточно мал по норме.
Условие (1.38) в конкретных задачах трудно проверить, потому что величина обычно неизвестна, и непосредственно им, как правило, воспользоваться не удается.
Поэтому для проверки достаточного условия экстремума функционала пользуются более простыми условиями.
Запишем вторую вариацию для функционала (1.13)
пользуясь определением второй вариации (1.35)
,
где .
Так как , то, предполагая наличие соответствующих производных у Ф, интегрируя по частям и принимая во внимание, что
, получим
, (1.39)
где .
Считаем, что необходимое условие экстремума выполнено, т.е. и для определенности будем говорить о минимуме функционала (1.13). Функция
, как функция переменной
при
должна иметь минимум, следовательно, необходимым условием минимума является тот факт, чтобы
при любом выборе
. Можно показать, что отсюда непосредственно вытекает, что вдоль экстремали должно иметь место равенство
.
Условие
называют условием Лежандра.