Курсовая работа: Вариации при исчислении
называют усиленным условием Лежандра.
Рассмотрим интеграл, входящий в формулу (1.39), заменяя букву буквой
, получим
.
Уравнение Эйлера для этого интеграла будет иметь вид
, (1.40)
причем, в этом уравнении есть коэффициент при
и в силу условия
, деля обе части уравнения на R, получим уравнение вида
с непрерывными в [a, b] коэффициентами p(x) и q(x). Уравнение (1.40) называют уравнением Якоби.
Пусть - решение уравнения (1.40), удовлетворяющее начальным условиям
.
Существенным для дальнейшего будет тот факт, имеет ли решение корни внутри промежутка [a, b]. Оказывается, что если такие корни имеются, то исследуемая экстремаль не может давать минимум функционалу (1.13).
Если при a < x < b, то говорят, что экстремаль u(x) в промежутке (a, b) удовлетворяет условию Якоби, а если
при
, то говорят, что экстремаль u(x) удовлетворяет усиленному условию Якоби. Следует заметить, что коэффициенты S и R уравнения (1.40) зависят от экстремали u(x) и, следовательно, высказанные выше условия являются условиями, накладываемыми на экстремаль u(x).
Имеет место следующая теорема. Усиленные условия Лежандра и Якоби достаточны для того, чтобы экстремаль давала слабый (местный) экстремум функционалу (1.13).
Можно показать, что если выполнены усиленные условия Лежандра и Якоби и, кроме того, положительно для всякого конечного p в некоторой области, содержащей экстремаль u(x) внутри, то эта экстремаль дает сильный (абсолютный) минимум.
Пример. Докажем, что экстремаль (1.30) (см Пример 1 в 1.8) дает функционалу (1.28) сильный минимум. Из (1.28) имеем
,
,
,
Уравнение (1.40) принимает вид
его решение при условии ,
имеет вид
.
Функция на отрезке
удовлетворяет усиленному условию Якоби, так как на этом отрезке она положительна. Так как
то и усиленное условие Лежандра выполняется. Следовательно, экстремаль (1.30) даёт функционалу (1.28) сильный (абсолютный) минимум.
1.9 Изопериметрическая задача
Изопериметрическая задача ставится следующим образом: Даны функционалы и постоянные
; среди элементов области определения D(J) функционала J, удовлетворяющего уравнениям
(1.41)
требуется найти элемент, доставляющий функционалу J наименьшее значение.
Считается, что область
не пуста.
Частным случаем изопериметрической задачи является задача о наибольшей площади, поставленная в 2.2.