Курсовая работа: Визначення характеристик вала з дисками

Рівняння руху тоді буде мати вигляд:

Звільняючись від коефіцієнта при диференціалі

і позначаючи


(1.2)

одержимо

(1.3)

Рішення цього рівняння може бути представлене у вигляді:

(1.4)

за аналогією одержуємо:

(1.5)

Очевидно, що ми в цьому випадку одержали просте гармонійне коливання.

Кругова частота цього коливання (рівна кутової швидкості) буде

(1.2а)

і період коливання

(1.6)


Формули (1.2а) і (1.6) справедливі в остаточному виді тільки для суцільного диска постійної товщини, у випадку якого-небудь іншого диска частоту й період варто визначати по формулах:

(1.2)

. (1. )

Обчислюємо в них відповідний момент інерції диска по формулах теоретичної механіки.

Розглянемо тепер випадок коливань вала з диском (мал. 1), з урахуванням маси вала. Крім полярного моменту інерції перетину вала, скористаємося вираженням для екваторіального моменту інерції (маси) вала, відомим з теоретичної механіки.

де I0 — екваторіальний момент інерції,

W - власна вага вала,

r - радіус вала.

Якщо вага одиниці об'єму вала, тобто його питома вага, позначити, то I0 для круглого вала можна представити у вигляді:

(2.b)

і екваторіальний момент одиниці довжини вала


К-во Просмотров: 374
Бесплатно скачать Курсовая работа: Визначення характеристик вала з дисками