Курсовая работа: Власні значення і власні вектори матриці

,

причому виявилось, що .

Тоді продовжувати перетворення по методу А. М. Данілевського не можна. Тут можливі два випадки.

1. Нехай якийсь елемент матриці D, що стоїть ліворуч нульового елемента , відмінний від нуля, тобто , де. Тоді цей елемент висуваємо на місце нульового елементу , тобто переставляємо (k-1) -й і k -й стовпці матриці D і одночасно переставляємо її (k-1) -й і l-й рядки. Можна довести, що одержана нова матриця D' буде подібна колишній. До нової матриці застосовуємо метод А.М.Данілевського.

2. Нехай , тоді D має вигляд


У такому разі віковий визначник det(D - lЕ) розпадається на два визначники

det (D - lЕ) = det (D1 - lЕ) det (D2 - lЕ).

При цьому матриця D2 вже приведена до канонічної форми Фробеніуса і тому det (D2 - lЕ) обчислюється відразу. Залишається застосувати метод А. М. Данілевського до матриці D1 .

Обчислення власних векторів по методу А. М. Данілевського.

Метод А. М. Данілевського [1] дає можливість визначати власні вектори даної матриці А, якщо відомі її власні значення. Неай l— власне значення матриці А, а отже, і власне значення подібної їй матриці Фробеніуса Р.

Знайдемо власний вектор матриці Р, відповідний даному значенню l: Ру = lу. Звідси (Р - lЕ) у = 0 або

Перемножуючи матриці, одержимо систему для визначення координат власного вектора у:


(1)

Система (1) — однорідна. З точністю до коефіцієнта пропорційності розв’язки її можуть бути знайдені таким чином. Покладемо yn =1. Тоді послідовно одержимо:

(2)

Таким чином, шуканий власний вектор є

.

Позначимо тепер через х власний вектор матриці А, що відповідає значенню l. Тоді, очевидно, маємо:


.

Перетворення M1 , здійснене над y, дає:

Таким чином, перетворення М1 змінює лише першу координату вектора. Аналогічно перетворення М2 змінить лише другу координату вектора М1 у і т.д. Повторивши цей процес n-1 разів, одержимо шуканий власний вектор х матриці А.

2.2 Метод А. Н. Крилова

Приведемо метод розгортання вікового визначника, що належить А. Н. Крилову [1] і заснований на істотно іншій ідеї, ніж метод А. М. Данілевського.

Нехай

(1)

— характеристичний поліном (з точністю до знаку) матриці А. Згідно тотожності Гамільтона-Келі, матриця А обертає в нуль свій характеристичний поліном; тому

К-во Просмотров: 487
Бесплатно скачать Курсовая работа: Власні значення і власні вектори матриці