Научная работа: Применение неравенств при решении олимпиадных задач
откуда Gn ≥ Hn .
Пусть x1 , x 2 , …, xn – произвольные числа. Средним квадратическим этих чисел называется число –
.
Теорема 3. Если x1 , x 2 , …, xn – положительные числа, то имеют место неравенства
Kn ≥ An ≥ Gn ≥ Hn , или
. (4)
Причём знак равенства в (4) достигается тогда и только тогда, когда все числа равны.
Для двух чисел неравенство (4) можно записать как
,
которое очень легко доказать с помощью простых преобразований. А именно,
аналогично доказывается и для n чисел, откуда Kn ≥ An .
Неравенство Бернулли
Ещё один способ решения некоторых олимпиадных задач – это использование неравенства Бернулли, которое иногда может значительно облегчить задачу. «Классическое» неравенство Бернулли формируется следующим образом:
Теорема. Для x > -1 и произвольного натурального n имеет место
(1)
причем равенство в (1) достигается при x=0, n=0 или n=1.
Однако кроме (1) существует и более общее неравенство Бернулли, которое содержит в себе два неравенства:
если n<0 или n>1, то
, (2)
если 0<n<1, то
, (3)
где x > -1.
Следует отметить, что равенства (2) и (3) имеют место лишь при x=0.
Доказательство(I способ):
, где xi – числа одного и того же знака и .
Применяем метод математической индукции.
Проверяем неравенство для n=1: . Неравенство верно.
Пусть неравенство верно для n членов, т.е. верно неравенство