Научная работа: Применение неравенств при решении олимпиадных задач

Выполнила:

ученица 11-Г класса

Борисенкова О.Д.

Научный руководитель:

Степанов Т.Л.

Донецк 2006


СОДЕРЖАНИЕ

Введение

1 Постановка задачи

2 Актуальность

3 Реализация задачи

3.1 Теоретические сведения

3.2 Решение задач с применением данных неравенств

3.3 Сборник задач

3.4 Тесты

4 Инструкция по пользованию

Выводы

Список использованной литературы


ВВЕДЕНИЕ

При решении задач, предлагаемых на вступительных письменных экзаменах и олимпиадах по математике, могут быть использованы любые известные абитуриентам математические методы. При этом разрешается пользоваться и такими, которые не изучаются в общеобразовательной школе.

Все это свидетельствует о необходимости самостоятельного изучения абитуриентами математических методов, в основе которых лежат понятия и положения, не входящие в программу по математике общеобразовательной школы. К таким понятиям, например, относятся неравенства Коши, Коши-Буняковского, Бернулли и Йенсена.


1. ПОСТАНОВКА ЗАДАЧИ

Таким образом, целью данной работы является разработка электронного обучающего пособия, в котором будет предложен материал по выбранной теме. Т.е. в учебнике будут предоставлены теоретические сведения по всем неравенствам, примеры применения этих неравенств в решении олимпиадных задач, сборник задач для самостоятельного решения, решения к ним, а также тестовые вопросы, которые позволят оценить себя и проверить уровень полученных знаний.

Для реализации поставленной задачи был выбран язык электронной разметки текста HTML.


2. АКТУАЛЬНОСТЬ

Данная разработка рассчитана на учащихся, которые имеют довольно-таки высокий уровень знаний в области математики, причем как в пределах, так и вне школьной программы, но все равно хотят его повысить. Т.е. этот учебник будет очень полезным для самостоятельного изучения темы и подготовки к олимпиадам ІІ-ІІІ этапов.

Также очень удобен и прост в применении, для работы с ним не требуется никаких специальных программ или дополнительных приложений, кроме стандартного Internet-браузера.

Важным пунктом является то, что в учебнике собрана информация по теме неравенств, которую в принципе довольно-таки сложно найти, причем так, чтобы она была в одном и том же печатном издании. Большая часть сведений по некоторым неравенствам была найдена только в периодических изданиях, журналах. Здесь же все собрано воедино, информация представлена кратко, но исчерпывающе для того, чтобы разобраться и понять.


3. РЕАЛИЗАЦИЯ ЗАДАЧИ

3.1 Теоретические сведения

Неравенство Йенсена

Теорема (неравенство Йенсена):

Пусть – функция, выпуклая на некотором интервале, x1 , x 2 , …, xn – произвольные числа из этого интервала, а α1 , α2 , …, αn – произвольные положительные числа, сумма которых равна единице. Тогда:

. (1)

Доказательство:

Рассмотрим на графике функции точки А1 , А2 , …, Аn с абсциссами х1 , x2 , …, xn . Расположим в этих точках грузы с массами, m2 , …, mn . Центр масс этих точек имеет координаты

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 606
Бесплатно скачать Научная работа: Применение неравенств при решении олимпиадных задач