Научная работа: Применение неравенств при решении олимпиадных задач

Упражнение 2. Неравенство Коши-Буняковского:

1.Доказать, что , где a,b,c – стороны треугольника; ha , hb , hc – высоты треугольника, опущенные на эти стороны; S – площадь треугольника.

2.Доказать, что , .

3.Доказать, что , если .

Упражнение 3. Неравенство Коши:

1.Для неотрицательных a, b, cвыполняется условие a2 +b2 +c2 =1. Доказать, что .

2.Дано: a, b, c≥0, a+b+c=1. Доказать неравенство: .

3.Доказать: .

4.Дано: x, y, z>0, xyz=1. Доказать .

Упражнение 4. Неравенство Бернулли:

1.Решить уравнение: .

2.Решить уравнение: .

3.Решить уравнение: .

Упражнение 5. Весовое (общее) неравенство Коши:

1.Доказать неравенство , если .

2.Доказать неравенство: .

3.Доказать неравенство:.

3.4 Тесты

1.Какая зависимость между коэффициентами αi в неравенстве Йенсена

?

а) их произведение равно единице

б) их сумма равна единице

в) они равны между собой

г) никакой

2.Как доказать неравенство Коши-Буняковского?

а) доказать неравенство Йенсена для функции

б) применить неравенство Коши для n чисел

в) доказать методом математической индукции

г) путем алгебраических преобразований

3.Когда достигается равенство в неравенстве Коши?

К-во Просмотров: 610
Бесплатно скачать Научная работа: Применение неравенств при решении олимпиадных задач