Научная работа: Решение алгебраического уравнения n-ой степени

ПОСТАНОВКА ЗАДАЧИ

Общий вид алгебраического уравнения n- ой степени

(x**n) + A1* (x** (n-1)) + A2* (x** (n-2)) + … + A (n-1) *x + An = 0, (1)

где

n- порядок алгебраического уравнения, ___

Ai- коэффициенты уравнения, любые действительные числа, i = 1,n.

Случай комплексных коэффициентов уравнения в данной работе не рассматривается.

Поскольку Вычисления на персональном Компьютере обладают конечной точностью, целесообразно уравнение (1) нормировать по старшему коэффициенту An, чтобы не происходило переполнения разрядной сетки. Нормирующий коэффициент RCn = (ABS (An)) ** (1/n). Если n- нечётная величина, знак абсолютной величины обычно опускают. Вычисления на персональном Компьютере всегда ведутся с определённой степенью точности EPS, которая задает Критерий окончания Счета.

Критерий окончания Счета: Если алгебраическая функция, заданная уравнением (1), при вычисленном значении корня xi меньше величины ABS (EPS*An), то вычисления названного корня прекращают. Далее понижают порядок исходного уравнения до величины (n - 1), если корень xi- действительный, или до величины (n - 2), если xi принадлежит паре комплексно - сопряжённых корней. Вся процедура повторяется сначала для полученного уравнения более низкого порядка до тех пор, пока не будут найдены все корни исходного уравнения (1). Если возможности Компьютера не достаточны, следует понизить степень точности EPS (в ущерб точности вычисления корней) или приобрести более мощную Персоналку. (Персоналка - персональная вычислительная Машина для каждого Пользователя)

Очевидно, что чем мощнее Компьютер, тем больше возможностей для решения уравнений более высоких Степеней n.

ЛОГИКА РАССУЖДЕНИЙ.

В общем случае, корни алгебраического уравнения отличаются друг от друга по величине. Следовательно, ВСЕГДА можно выделить в Решении наибольший по модулю (доминирующий) и наименьший корни. (Уместно оговориться сразу, что наименьший по модулю корень будет доминирующим в уравнении, обратном данному).

Попробуем последовательно возводить корни в квадрат и сравнивать их по величине между собой. После нескольких таких операций легко убедиться, что все корни уравнения для квадратов относительно переменной xc = (x** (2**J)) - ничтожно малы, кроме доминирующего корня xc1.

ВСЕ коэффициенты уравнения, кроме первых двух, будут стремиться к нулю и, следовательно, ими можно пренебречь. Тогда корень xc1 может быть найден из квадратного уравнения, а корень исходного алгебраического уравнения определится выражением x1 = (xc1** (1/ (2**J))).

Зачастую, при обеспечении заданной степени точности EPS, раньше вычисляется доминирующий корень обратного уравнения, поэтому РЕКОМЕНДУЕТСЯ определять доминирующие корни как прямого, так и обратного, уравнений.

При этом удаётся минимизировать затраты машинного времени и, следовательно, добиться максимальной скорости вычислений.

Уравнение (1) является частным случаем другого алгебраического уравнения n- ой степени для переменной xc = (x** (2**J)), где J- шаг преобразования, J = 1,m, m и n- любые натуральные числа.

(xс**n) + B1* (xс** (n-1)) + B2* (xc** (n-2)) + … + B (n-1) *xc + Bn = 0, (2)

где

B1 = - ( (C1**2) - (2*C2)),

B2 = (C2**2) - (2*C1*C3) + (2*C4),

B3 = - ( (C3**2) - (2*C2*C4) + (2*C1*C5) - (2*C6)),

………………………………………………………

B (n-1) = ( (-1) ** (n-1)) * ( (C (n-1) **2) - (2*C (n-2) *Cn)),

Bn = ( (-1) **n) * (Cn**2).

Уравнение (2) может быть получено умножением исходного уравнения (1) на уравнение для корней, взятых с обратным знаком. Например, для случая n = 3это выглядит следующим образом:

( (x**3) + A1* (x**2) + A2*x + A3) * ( (x**3) - A1* (x**2) + A2*x - A3) = 0.

Тогда относительно переменной xc = (x**2) получают уравнение (2) при J = 1

(xc**3) - ( (A1**2) - (2*A2)) * (xc**2) + ( (A2**2) - (2*A1*A3)) *xc - (A3**2) = 0.

К-во Просмотров: 899
Бесплатно скачать Научная работа: Решение алгебраического уравнения n-ой степени