Реферат: 5 различных задач по программированию
Первые три уравнения этой системы представляют некоторый предпочитаемый
эквивалент (11) системы уравнений (5) и определяютбазисное неотрицательное
решение (10) и производственную программу (12), а из последнего уравнения
системы (16) получается выражение функции цели черезсвободные переменные.
Получим следующий предпочитаемый эквивалент системы условий, который определит
для системы (5) новое базисное неотрицательноерешение и уже третью
производственную программу, для исследования которого нам придется выразить
функцию z=1332+14x2+10x3-5x4-9x6через новые свободные переменные, удалив оттуда
переменную х2, ставшую базисной.
Очевидно, если имеется хотя бы один отрицательный коэффициент Dj прикакой-нибудь
переменной xj в последнем уравнении системы (16), то производственная программа
не является наилучшей и можно далее продолжатьпроцесс ее улучшения. Мы нашли в
последнем уравнении системы (16) наименьший отрицательный коэффициент
min(Dj<0) =min(-14,-10) = -14 = D2. Поэтому принимаем х2 в системе (11) за
разрешающую неизвестную, находимразрешающее уравнение по
(17)
и исключаем х2 из всех уравнений системы (11), кроме третьего уравнения. Укажем
разрешающий элемент а32=7.
Теперь мы будем преобразовывать вспомогательную систему (16), по формулам
исключения.
a`ij=aij – (ais/ars)*arj
a`iq=aiq – (ais/ars)*arq
b`i=bi - (ais/ars)*br
b`r=br/ars
s=1, r=2
a`11=0
a`13=4-2/7*7=2
a`14=0+2/7 *1=2/7
a`15=1