Реферат: Экзаменационные билеты по аналитической геометрии за первый семестр 2001 года

29. Переход от одного способа задания прямой к другому (на примерах).

30. Уравнение второй степени на плоскости. Какую линию называют кривой второго порядка на плоскости?

31. Уравнение эллипса, гиперболы и параболы на плоскости.

32. Какое уравнение называют уравнением второго порядка в пространстве?

33. Что называется уравнением поверхности в пространстве Охуz?

34. Вырожденные поверхности второго порядка.

35. Невырожденные поверхности второго порядка и их канонические уравнения.

36. Метод параллельных сечений.

37. Эллипсоид, его полуоси. Исследование его формы.

38. Однополостный гиперболоид, его полуоси. Исследование его формы.

39. Гиперболический параболоид, его параметры и форма.

40. Какая поверхность называется поверхностью вращения?

41. Двухполостный гиперболоид вращения, его форма.

42. Эллиптический параболоид вращения и его форма.

43. Конус вращения и его вид.

44. Канонические уравнения двухполостного гиперболоида, конуса, эллипсоида и эллиптического параболоида с осью вращения Oz; Ox; Oy.

45. Цилиндры второго порядка. Их уравнение. Типы цилиндров. Их форма.

46. Линейчатые поверхности второго порядка.

47. Напишите формулы преобразования декартовых прямоугольных координат в пространстве при параллельном сдвиге осей.

48. Напишите формулы преобразования декартовых прямоугольных координат в пространстве при повороте вокруг оси Оz на угол a.

49. Приведение к каноническому виду уравнения поверхности второго порядка с центром в начале координат.

50. Какое уравнение является характеристическим для квадратичной формы?

51. Какие числа называются характеристическими числами квадратичной формы?

52. Приведение к каноническому виду общего уравнения поверхности второго порядка.

53. Можно ли установить тип поверхности, зная характеристические числа?

54. Найти точку пересечения прямых 3х - 4у + 10 = 0 и х + 5у – 3 = 0, используя формулы Крамера.

55. Докажите, что две прямые на плоскости параллельны, если = (2, 5) и = (-4, -10) - их направляющие векторы.

56. Докажите, что две прямые на плоскости перпендикулярны, если = (-2, 3) и = (3, 4) - их нормальные векторы.

57. Из точки (3, -2, 4) опустить перпендикуляр на плоскость 5х + 3у - 7z + 1= 0.

К-во Просмотров: 247
Бесплатно скачать Реферат: Экзаменационные билеты по аналитической геометрии за первый семестр 2001 года