Реферат: Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения
Интеграл по комплексной переменной.
Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.
Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг.
Основные свойства : Пусть на комплексной плоскости Z задана кусочно-гладкая кривая С длиной , используя параметрическое задание кривой С зададим tи (t), где иявляются кусочно-гладкими кривыми от действительной переменной t. Пусть <= t<=?????? ? ????? ???? ???????????? ??????? .
Пусть и удовлетворяют условию : [‘(t)]2 + [‘(t)]2 0. Очевидно, что задание координат =tи (t), равносильно заданию комплексной функции (t)= (t) i(t).
Пусть в каждой точке (t) кривой С определена некоторая функция f ( ). Разобьем кривую С на n – частичных дуг точками деления 0 , 1 , 2 , …, n-1 соответствующие возрастающим значениям параметра t, т.е. t0, t1, …, t i+1 > t i.
i = i – i-1. Составим интегрируемую функцию S = f (*) i . (1)
где *– производная точки этой дуги.
Если при стремлении max | i | 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек i , то этот предел называется интегралом от функции f ( ) по кривой С.
(2)
f (i* ) = u (Pi*) + iv (Pi*) (3)
где i = (t) i(t) ((t) и(t) - действительные числа)
Подставив (3) в (1) получим :
(4)
Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при и 0 и предполагая, что данные пределы существуют, получаем :
(5)
Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f ( ).
Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :
О
ограниченности интеграла.
П
ри этом z = ( ).
7.) Пусть Cp – окружность радиуса , с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : = Z0 + ei, 0 2, d = iei d .
К
усочно-гладкую замкнутую кривую будем называть замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.
ТЕОРЕМА КОШИ.
В качестве положительного обхода контура выберем направление при котором внутренняя область, ограниченная данным замкнутым контуром остается слева от направления движения :
--> ЧИТАТЬ ПОЛНОСТЬЮ <--