Реферат: Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения


( 8 )


ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G , равен нулю.

Доказательство : из формулы (5) следует:

Т
.к. f( ) аналитическая всюду, то U(x, y), V(x, y) - непрерывны в области, ограниченной этим контуром и при этом выполняются условия Коши-Римана. Используя свойство криволинейных интегралов:

А

налогично :

По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и оба криволинейных интеграла равны нулю. Отсюда :



ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f() является аналитической в односвязной области G, ограниченной кусочно-гладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю.


TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :

Пусть f () является аналитической функцией в многосвязной области G, ограниченной извне контуром С0, а изнутри контурами С1, С2, .. ,Сn (см. рис.). Пусть f () непрерывна в замкнутой области G, тогда :


, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn. Причем обход кривой С осуществляется в положительном направлении.


Неопределенный интеграл.

С
ледствием формулы Коши является следующее положение : пусть f(Z) аналитична в односвязной области G, зафиксируем в этой области точку Z0 и обозначим:

интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0 и Z, в силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией Ф(Z). Аналитическая функция Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф (Z) = f( Z).

Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и в случае с функцией действительного переменного имеет место равенство :


( 9)


Это аналог формулы Ньютона-Лейбница.


Интеграл Коши. Вывод формулы Коши.

Ранее была сформулирована теорема Коши, которая позволяет установить связь между значениями аналитической функции во внутренних точках области ее аналитичности и граничными значениями этой функции.

П
усть функция f(Z) – аналитическая функция в односвязной области G, ограниченной контуром С. Возьмем внутри этой области произвольную точку Z0 и в области G вокруг этой точки построим замкнутый контур Г. Рассмотрим вспомогательную функцию (Z). Эта функция аналитична в области G всюду, кроме точки Z=Z0. Проведем контур с достаточным радиусом, ограничивающий точку Z0, тогда функция будет аналитична в некоторой двусвязной области, заключенной между контурами Г и . Согласно теореме Коши имеем :


По свойствам интегралов :


(2 )

Так как левый интеграл в (2) не зависит от выбора контура интегрирования, то и правый интеграл также не будет зависеть от выбора контура. Выберем в качестве окружность с радиусом . Тогда:


(3)


Уравнение окружности : = Z0 + ei (4)

Подставив (4) в (3) получим :



К-во Просмотров: 926
Бесплатно скачать Реферат: Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения