Реферат: Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения


( 6 )



(7)


Устремим 0, т.е.  0.

Тогда т.к. функция f() аналитична в точке Z=Z0 и всюду в области G, а следовательно и непрерывна в G, то для всех >0 существует >0, что для всех из –окрестности точки Z0 выполняется | f() – f(Z0) | < .




(8)


Подставив ( 7) в ( 6) с учетом ( 8) получаем :

П
одставляя в ( 5) и выражая f(Z0) имеем :


(9)


Это интеграл Коши.

Интеграл, стоящий в (9) в правой части выражает значение аналитической функции f() в некоторой точке Z0 через ее значение на произвольном контуре , лежащем в области аналитичности функции f() и содержащем точку Z0 внутри.

Очевидно, что если бы функция f() была аналитична и в точках контура С, то в качестве границы в формуле (9) можно было использовать контур С.

Приведенные рассуждения остаются справедливыми и в случае многосвязной области G.


Следствие : Интеграл Коши, целиком принадлежащий аналитической области G имеет смысл для любого положения Z0 на комплексной плоскости при условии, что эта точка есть внутренней точкой области Г. При этом если Z0 принадлежит области с границей Г, то значение интеграла равно (9), а если т. Z0 принадлежит внешней области, то интеграл равен нулю :

П
ри Z0 Г указанный интеграл не существует.


Интегралы, зависящие от параметра.


Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2-х комплексных переменных : переменной интегрирования и Z0. Таким образом интеграл Коши может быть рассмотрен как интеграл, зависящий от параметра, в качестве которого выбираем точку Z0.

Пусть задана функция двух комплексных переменных (Z, ), причем Z= x + iy в точке, принадлежащей некоторой комплексной плоскости G. = + i С. (С - граница G).

Взаимное расположение области и кривой произвольно. Пусть функция (Z, ) удовлетворяет условиям : 1) Функция для всех значений  С является аналитической в области G. 2) Функция (Z, ) и ее производная  являются непрерывными функциями по совокупности переменных Z и при произвольном изменении области G и переменных на кривой С. Очевидно, что при сделанных предположениях :

И
нтеграл существует и является функцией комплексной переменной. Справедлива формула :


(2)


Эта формула устанавливает возможность вычисления производной от исходного интеграла путем дифференцирования подинтегральной функции по параметру.


ТЕОРЕМА. Пусть f(Z) является аналитической функцией в области G и непрерывной в области G (G включая граничные точки ), тогда во внутренних точках области G существует производная любого порядка от функции f(Z) причем для ее вычисления имеет место формула :



(3)


С помощью формулы (3) можно получить производную любого порядка от аналитической функции f (Z) в любой точке Z области ее аналитичности. Для доказательства этой теоремы используется формула (2) и соответственные рассуждения, которые привели к ее выводу.


К-во Просмотров: 933
Бесплатно скачать Реферат: Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения