Реферат: Исследование функции с помощью производной

Точки минимума и максимума принято называть точками экстремума.

Пример 10. Найти точки экстремума, экстремумы функции y=x2 +2x, и указать промежутки возрастания и убывания функции.

y=x2 +2x, D(y)=R

y’=(x2 +2x)’=2x+2

y’=0, т.е. 2х+2=0

2х=-2

х=-1

Исследуем знак производной справа и слева от крайней точки.

- +

-1

min

x=-2, y’=-4+2<0

x=0, y’=0+2>0

Так как производная меняет свой знак с «-» на «+», то х=-1, это точка минимума функции.

Так как функция непрерывна в точке х=-1, то функция возрастает на [-1;+∞] и убывает на [-∞;-1].

Точки экстремума: xmin = -1

Экстремумы функции: ymin =y(-1)=1-2= -1


Глава III. Исследование функций.

3.1. Общая схема исследования функций.

Исследуя функцию, нужно знать общую схему исследования:

1) D(y) – область определения (область изменения переменной х)

2) E(y) – область значения х (область изменения переменной у)

3) Вид функции: четная, нечетная, периодическая или функция общего вида.

4) Точки пересечения графика функции с осями Охи Оу (по возможности).

5) Промежутки знакопостоянства:

а) функция принимает положительное значение : f(x)>0

б) отрицательное значение : f(x)<0.

К-во Просмотров: 585
Бесплатно скачать Реферат: Исследование функции с помощью производной