Реферат: Окружности в треугольниках и четырехугольниках

8. SBOC = 2 ∙ SBOK = 2 ∙ 20 = 40

Ответ: SBOC = 40

3.2 Задачи с окружностью, вписанной в треугольник

Задача 4: радиус окружности, вписанной в прямоугольный треугольник, равен 2 м, а радиус описанной окружности равен 5 м. Найдите больший катет треугольника.


Решение:

1. AC = 2r = 10 м

2. Пусть AM = AK = x, MC = CL = y

По теореме Пифагора:

x + y = 10

(x + 2)2 + (y + 2)2 = (x + y)2

y = 10 – x

(x + 2)2 + (10 – x + 2)2 = (x + 10 – x)2

(x + 2)2 + (12 – x)2 = 100

x2 + 4x + 4 +144 – 24x + x2 = 100

2x2 – 20x + 148 = 100

2x2 – 20x + 48 = 0

x2 – 10x + 24 = 0

x1 = 6, x2 = 4

y = 10 – x

x = 6 x = 4

y = 4 y = 6

3. Так как нужно найти больший катет, то берем y = 6

BC = 2 + 6 = 8 м

Ответ: BС = 8 м

Задача 5: окружность, вписанная в равнобедренный треугольник, касается его боковых сторон в точках K и A. Точка K делит сторону этого треугольника на отрезки 15 и 10, считая от основания. Найдите длину отрезка KA.


Дано: ∆ BCD – равнобедренный, K є BC, A є DC, BK = 15, KC = 10

Найти: KA

Решение:

1. CD = CB = BK + KC, CD = CB = 15 + 10 = 25

К-во Просмотров: 809
Бесплатно скачать Реферат: Окружности в треугольниках и четырехугольниках