Реферат: Окружности в треугольниках и четырехугольниках

Найти:


Решение:

1. Пусть OE = R, BD = 4OE = 4R

2.

3.

4.

Ответ:

Задача 8: найдите площадь равнобедренной трапеции, описанной около окружности с радиусом 4, если известно, что боковая сторона трапеции равна 10.

Дано: ABCD – равнобедренная трапеция, r = 4, AB = 10

Найти:


Решение:

1. AB = CD = 10 по условию

2. AB + CD = AD + BC по свойству вписанной окружности

3. AD + BC = 10 + 10 = 20

4. FE = 2r = 2 · 4 = 8

5.

Ответ:

Задача 9: внутри правильного треугольника со стороной a расположены три равные окружности, каждая из которых касается двух сторон треугольника и двух других окружностей. Найти площадь части треугольника, расположенной вне этих окружностей.


Решение:

1. Пусть AB = BC = AC = a.

2. Обозначим O1 E = O1 K = ED = r, тогда AD = AE + ED = AE + r = .

3. AO1 – биссектриса угла A, следовательно, ﮮ O1 AE = 30˚ и в прямоугольном ∆AO1 E имеем AO1 = 2O1 E = 2r и AE ===. Тогда AE + r = == , откуда .

4.

Ответ:

Задача 10 : вся дуга окружности радиуса R разделена на 4 большие и 4 малые части, которые чередуются одна за другой. Большая часть в два раза длиннее малой. Определить площадь восьмиугольника, вершинами которого являются точки деления дуги окружности.


Решение:

1. Пусть ﮮAOB = 2x, ﮮBOC = x, тогда по условию 8x + 4x = 360°, x = 30°, 2x = 60°, ﮮAOB = 60°, ﮮBOC = 30°

2.

К-во Просмотров: 808
Бесплатно скачать Реферат: Окружности в треугольниках и четырехугольниках