Реферат: Представление численной информации в ЭВМ. Системы счисления
СОДЕРЖАНИЕ
Введение
1.Понятие системы счисления. Классификация систем счисления. Позиционные и непозиционные системы счисления
1.1 Непозиционные системы счисления
1.2 Позиционные системы счисления
2. Перевод чисел из одной системы счисления в другую
2.1 Перевод целых чисел из одной позиционной системы счисления в другую
2.2. Перевод правильных дробей
2.3 Перевод неправильных дробей
2.4 Перевод чисел из системы счисления в систему с кратным основанием
3. Выбор системы счисления для применения в ЭВМ
4. Двоичная система счисления
4.1 Навыки обращения с двоичными числами
5. Формы представления двоичных чисел в ЭВМ
6. Точность представления чисел в ЭВМ
Вывод
Литература
Введение
Тема реферата по курсу «Прикладная теория цифровых автоматов» - «Представление численной информации в ЭВМ. Системы счисления».
Цель написания реферата:
ознакомится с понятием системы счисления; классификацией систем счисления; переводом чисел из одной системы счисления в другую; выбором системы счисления для применения в ЭВМ; двоичной системой счисления; формами представления двоичных чисел в ЭВМ; точностью представления чисел в ЭВМ и др.
1.Понятие системы счисления. Классификация систем счисления. Позиционные и непозиционные системы счисления
Системы счисления были созданы в процессе хозяйственной деятельности человека, когда у него появилась потребность в счете, а по мере развития научной и технической деятельности возникла также необходимость записывать числа и производить над ними вычисления
Системой счисления называется совокупность символов и приемов, позволяющих однозначно изображать числа.Или, в общем случае, это специальный язык, алфавитом которого являются символы, называемые цифрами, а синтаксисом - правила, позволяющие однозначно сформировать запись чисел. Запись числа в некоторой системе счисления называется кодом числа. В общем случае число записывается следующим образом:
А=аn an -1 ... а2 a1 а0
Отдельную позицию в записи числа принято называть разрядом, а номер позиции - номером разряда, количество разрядов в записи числа - это разрядность и она совпадает с длиной числа. В техническом плане длина числа интерпретируется как длина разрядной сетки. Если алфавит имеет р различных значений, то разряд aі в числе рассматривается как р-ичная цифра, которой может быть присвоено каждое из р значений.
Каждой цифре aі данного числа А однозначно соответствует ее количественный (числовой) эквивалент - К(aі ). При любой конечной разрядной секе количественный эквивалент числа А будет принимать в зависимости от кличественных отдельных разрядов значения от К(А) min до К(А) max .
Диапазон представления (D) чисел в данной системе счисления - это интервал числовой оси, заключенный между максимальными и минимальными числами, представленными заданной разрядностью (длиной разрядной сетки):
D = К(А) ( p ) max - К(А) ( p ) min .
Существует бесчисленное множество способов записи чисел цифровыми знаками. Однако, любая система счисления, предназначенная для практического использования, должна обеспечивать:
1) возможность представления любого числа в заданном диапазоне чисел;
2) однозначность представления;
3) краткость и простоту записи чисел;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--