Реферат: Различные подходы к определению проективной плоскости

Одним из важных результатов проективной геометрии является теорема Дезарга, которая утверждает следующее:

П5 (теорема Дезарга)

Если прямые проходящие через соответственные вершины двух трехвершинников пересекаются в одной (), то () пересечения соответственных сторон этих трехвершинников лежат на одной прямой.


P =ABÇA’B’ AA’ÇBB’ÇCC’=0

Q=ACÇA’C’

R=BCÇB’C’

P ,Q,R лежат на одной прямой.

В рамках теории, которую мы строим, не совсем правильно называть это утверждение “теоремой”, потому что нельзя доказать, исходя только из аксиом П1-П4. Примем это утверждение за аксиому П5. Хотя при первом и втором способе построения проективной плоскости это утверждение выступает как теорема.

Покажем, что П5 не есть следствие П1-П4, а именно, построим геометрию, удовлетворяющую аксиомам П1-П4, но не удовлетворяющую П5.

Определение : Конфигурацией называют множество элементов, именуемых точками, и набор его подмножеств, именуемых прямыми, если при этом выполняется аксиома.

К1. Две различные () принадлежат не более чем одной прямой.

Отсюда следует, что две различ

К-во Просмотров: 509
Бесплатно скачать Реферат: Различные подходы к определению проективной плоскости