Реферат: Различные подходы к определению проективной плоскости
П1.Через две различные точки P и Q плоскости S можно провести единственную прямую.
П2. " две прямые пересекаются по меньшей мере в одной точки.
П3. $ три неколлинеарные точки.
П4. Прямая содержит, по меньшей мере, три точки.
3.3. Модели проективной плоскости.
1)Рассмотренная ранее расширенная евклидовая плоскость есть модель проективной плоскости.
Доказательство: Проверим выполнение четырех аксиом П1-П4.
П1. Пусть P и QÎ
1. Если Р и Q - собственные (), то через них можно провести только одну прямую.
2. Если Р - собственная точка p, а Q- несобственная точка, то по аксиоме А2 $ прямая m , такая, что РÎm и m || l , так , что QÎ пополнению прямой m до прямой из p. Прямая m -единственная прямая p, проходящая через Р и Q.
3. Если Р и Q несобственные (), то через них проходит единственная несобственная прямая.
П2. Пусть заданы прямые l и m .
1.Если l и m - несобственные прямые и l || m , то они пересекаются в некоторой точке. Если l || m , то они пересекаются в несобственной точке Р¥.
2.Если l - собственная прямая, а m - несобственная прямая, то они пересекаются в несобственной точке Р¥.
П3. Непосредственно следует из А3. Необходимо только проверить, что если Р и Q и R неколлинеарны в А, то они не будут коллинеарны в p. Действительно, в p$ только одна (несобсвтенная) прямая, не принадлежащая А, но () Р,Q,R ей не принадлежат.
П4. Каждая прямая плоскости А содержит хотя бы две (). Но в p каждая прямая содержит еще и несобственную точку, поэтому она содержит не менее трех точек.
2) Пополняя аффинную плоскость А из четырех (), мы получим проективную плоскость S1 из семи точек.
Докажем это: Проверим выполнение четырех аксиом П1-П4.
Определим () пересечения прямых АВÇCD=N ¥, BCÇAD=M ¥, АCÇBC=P ¥N ¥, P ¥, M ¥Î одной несобственной прямой.
П1. Через две различные () плоскости можно провести единственную прямую.
Если А,В - собственные (), то через них можно провести только одну прямую из А. () А,В Î несобственной прямой, поэтому и в S1 через них можно провести единственную прямую.
Рассмотрим А- собственная () и N ¥- несобственная (). Через эти точки проходит единственная прямая, так как () N ¥ определена как пересечение прямых АВ и CDÞN ¥ÎАВ.
Пусть имеем не собственные точки, через них проходит несобственная прямая S1 и она единственная.
П2. " две прямые пересекаются по меньшей мере в одной точке.
Справедливость аксиомы П2 следует из определения S1.
П3. $ три неколлинеарные точки.
Непосредственно следует из построения аффинной плоскости А. А мы дополнили точками N ¥, P ¥, M ¥ (несобственными, которые принадлежат одной несобственной прямой). И поэтому точки не коллинеарные в А будут неколлинеарные в S1.
П4. Каждая прямая плоскости А содержит хотя бы две точки. В S1 каждая прямая содержит несобственную точку. Следовательно прямая в S1 содержит не менее трех точек.
Все аксиомы проективной плоскости выполняются, следовательно, S1 - проективная плоскость.
3) Связка прямых евклидова трехмерного пространства - модель проективной плоскости, построенной на аксиомах П1-П4.