Реферат: Використання комп’ютерів у фізиці
Ілюструємо класичні методи і метод Монте-Карло для оцінки чисельних інтегралів.
10.1. Прості одномірні методи чисельного інтегрування.
Ці методи (класичні) мають перевагу для малих розмірностей.
Геометрична інтерпретація інтегралу - площа під графіком у межах x = a до x = b, відрізок ділимо на n відрізків довжиною :
де , і ,
Оцінка площі - сума площ прямокутників. Значення обчислюється у початку відрізків і оцінка інтегралу дається формулою:
.
10.2. Інший метод трапеції із сторонами у початку і кінці відрізка.
Тобто, f(x) замінюємо прямою, що сполучає значення f(x) в кінцях відрізка. Площа
.
Повна площа
.
Більшу точність дає квадратична, або параболічна інтерполяція за трьома точками
Площа під параболою між точками виражається формулою:
Повна площа всіх параболічних сегментів:
,
де n – має бути парним.
.
Точність методу прямокутників зростає, як = , трапецій – n-2 , парабол – n-4 .
10.3.Чисельне інтегрування багатовимірних інтегралів.
Багато фізичних задач містять усереднення по багатьом змінним. Наприклад, середнє значення енергії системи частинок E(ri ,pi ), i =1, ..., n. Якщо розмірність простору N = 6n, а число точок на відрізку одного виміру p, то потрібно обчислити за pN точками суму.
Ще дуже складно визначати N-1 - межу інтегрування. Стандартні методи використовуються для N = 2 - 5.
Найпростіший метод оцінки багатовимірних інтегралів зводиться до послідовного взяття одновимірних інтегралів:
,
і .
10.4. Обчислення інтегралів найпростішим методом Монте-Карло.