Реферат: Використання комп’ютерів у фізиці
легко показати що
Хвильове рівняння має величезну кількість розв’язків наприклад
Оскільки хвильове рівняння лінійне, то розв’язок можна представити у вигляді ряду Фур’є.
Якщо хвиля при русі зберігає свою форму то кажуть, що вона не диспергує, це зумовлено лінійністю зв’язку i k, інакше кожна гармоніка хвилі рухається з тією ж швидкістю. Якщо ж швидкість хвилі залежить від довжини хвилі (або хвильового числа), то кажуть, що диспергує, і цьому випадку форма хвилі змінюється з часом.
8.5. Інтерференція і дифракція.
Про інтерференцію говорять, коли змішуються хвилі від невеликого числа джерел, а про дифракцію коли від великого.
Дослід Юнга.
Дві щілини, монохроматичне світло. Щілини як точкові джерела
.
Електричне поле буде рівне сумі
Інтенсивність дорівнює .
8.6. Поляризація.
Розглянемо явище, коли цікавить напрямок коливань. Для поперечної електромагнітної хвилі. Напруженість двовимірна векторна функція вздовж z-розповсюджується хвиля.
Ex (z,t) і Ey (z,t) Для монохроматичної хвилі =const, але компоненти коливаються незалежно.
Щоб сумарне поле знайти треба векторно скласти компоненти.
8.7. Геометрична оптика і принцип найменшого часу.
Геометричною оптикою можна користуватись, коли <<l, l – розмір перепон чи детекторів.
Для променів, що розповсюджуються, виконується принцип Ферма: промінь світла йде по шляху між двома точками, який вимагає найменшого часу.
Аналогічний принцип найменшої дії використовується замість законів Ньютона у якості фундамента всієї класичної механіки. В однорідному середовищі світло поширюється прямолінійно.
Розглянемо дзеркало:
a + b = d
Цікавим є застосування принципа Ферма для задач заломлення, коли світло падає на поверхню розділу двох речовин, у яких швидкість світла різна: