Реферат: Випадкові події

і залежними, якщо не справджується. Враховуючи властивість асоціативності операції перерізу множин, рівність (10) можна узагальнити на випадок декількох незалежних подій

.(12)

Остання рівність називається теоремою множення ймовірностей незалежних подій.

Якщо події залежні, то настання однієї з них змінює ймовірність іншої.

Приклад 3. В урні є 2 білі та 3 чорні кулі. З урни виймають одну кулю, після чого, не повертаючи її назад, виймають ще одну. Нехай подія А – першого разу вийнята біла куля, а подія В – другого разу вийнята біла куля. Якщо подія А настала, то ймовірність , а якщо подія А не настала (першого разу вийнята чорна куля), то .

Імовірність події В за умови настання події А називається умовною ймовірністю і позначається або . З використанням умовних ймовірностей для ймовірності спільного настання будь-яких подій А і В можна записати

.(13)

Якщо події незалежні, то

(14)

і (13) переходить у рівність (11).

Рівність (13) можна узагальнити на випадок довільної кількості залежних подій,

,(15)

- ймовірність настання події А3 за умови настання події А1 і А2 ,…,

- ймовірність події Аn за умови настання і події А1 , і події А2 , і..., і події Аn-1.

З формули (12) слідує рівність

,(16)

яка часто використовується для означення умовної ймовірності.

8. Залежність/незалежність та сумісність/несумісність подій

У більшості практичних випадках важко одразу зробити висновок про незалежність/залежність подій та про їх сумісність/несумісність, і тому необхідні певні дослідження.

Для перевірки залежності/незалежності подій необхідно перевірити рівність (1.7.11) або (1.7.13). Рівність справджується – події незалежні, не справджується – залежні.

Приклад 1. Необхідно дослідити на залежність/незалежність події А – випаде дубль при киданні двох кубиків – і події В – випаде менше 6 очок.

Розв’язування. Для цього необхідно обчислити та . Це можна зробити, якщо скористатися класичним означенням ймовірностей. Події А сприяють наслідки , всього 6 із 36. Тому . Події В сприяють наслідки

всього 10 із 36. Тому . Одночасному настанню подій А і В сприяють наслідки , всього 2. Тому .

Отже, . Висновок – події залежні.

Для перевірки сумісності/несумісності випадкових подій необхідно перевірити умову . Рівність справджується – події несумісні, не справджується – сумісні.

Приклад 2. Події А і В з прикладу 1.8.1 є сумісними:

.

Незалежні події А і В при ненульових ймовірностях завжди сумісні.

Доведення. З означення незалежності подій слідує, що якщо і, то , що і є означенням сумісності подій.

Несумісні події обов’язково незалежні. Сумісні події можуть бути як залежними, так і незалежними.

К-во Просмотров: 603
Бесплатно скачать Реферат: Випадкові події