Реферат: Взаимосвязи экономических перемененых
5). Модель линейна отн-но расчет пар-ов, но в ур-ях множест регр-ии возн-т необ-ть выпол-ия еще одного усл-ия.
6). В модели отсут-т соверш мульт-ть м/у объясняющ перем-ми. Нап-р: в модель нельзя одновр-но включать данные годовые и квартальные в этом же году, т.к. годовые склад-ся из поквартальных.
7). Как уже б показано для исп-ия t стат-ки и расчета стандартов откл-ий д вып-ся требование о том, что случ откл-ия εi имеют норм распр-ие εi~N(0;σ²). Выполнимость этой предпосылки дает возм-ть при соотв-ии модели осн требованиям модели Гауса-Маркова утвер-ть, что мы нашли наилучшие оценки коэф-в ур-ия, чем м бы их получить, используя люб др метод нахождения.
Предпол-м, что мы вычислили оценки коэф-та, тогда ур-ие множест регр-ии, построенное на основе выборки, б запис-ть в форме аналогич записи в парной регр-ии.
ỹ=bo+b1x1+b2x2+…+bmxm
y=bo+b1x1+b2x2+…+bmxm+e, где е – вектор расчетных откл-ий
И для любого набора значений ф-ров в выборке б вып-ся
ỹi=bo+b1xi1+b2xi2+…+bmxim
yi- ỹi=ei
А тогда по методу МНК мы м опр-ть ф-ию Q=∑ei²= ∑(yi-bo-b1xi1-b2xi2-…-bmxim)²
И найти от этой ф-ии част производные по ее парам-м (коэф-там ур-ия).
Получаем сис-му из m+1 ур-ия с m+1 неизв-м. Если ее приравнят к 0, то получим сис-му лин ур-ий отн-но коэф-в ур-ия регр-ии, кот-ая всегда б иметь единств решение, т.к. мы м добиться того, чтобы опр-ль сис-мы был ≠0.
Но в тех случаях, когда кол-во объясняющ перем-х m>2, решение таких сис-м нач-т вызывать трудности, поэтому расчет коэф-в делают в матрчно-вект-й форме.
Расчет коэффициентов множественной линейной регрессии.
Предпол-м, что исход выборка предст-на как
Век-р искомых коэф-в и вектор откл-ий
Тогда вел-на Q м.б. запис-на в виде произв-ия 2-х век-ров как
А Ỹ б опр-ся как
=> е=У-Ỹ
, т.к. транспонирование озн-т, что строки стан-ся столбцами и наоборот.
Но т.к. Q –нек-ое число, то каждое из выраж-й здесь также из себя предс-т число.