Шпаргалка: Действительные числа Иррациональные и тригонометрический уравнения

6. Промежутки знакопостоянства:

cosx > 0 , если хÎ (-p/2+2pn; p/2 + 2pn), nÎZ;

cosx < 0 , если хÎ (p/2 + 2pn; 3p/2 + 2pn), nÎZ.

Доказывается это на тригонометрическом круге (рис). Знаки косинуса в четвертях:

x > 0 для углов a первой и четвертой четвертей.

x < 0 для углов a второй и третей четвертей.

7. Промежутки монотонноти:

y = cosx возрастает на каждом из промежутков [-p + 2pn; 2pn],

nÎz и убывает на каждом из промежутков [2pn; p + 2pn], nÎz.

Свойства функции у = tgx и ее график: свойства -

1. D (y) = (xÎR, x ¹ p/2 + pn, nÎZ).

2. E (y) =R.

3. Функция y = tgx - нечетная

4. Т = p - наименьший положительный период.

5. Промежутки знакопостоянства:

tgx > 0 при хÎ (pn; p/2 + pn;), nÎZ;

tgx < 0 при xÎ (-p/2 + pn; pn), nÎZ.


Знаки тангенса по четвертям смотри на рисунке.

6. Промежутки монотонности:

y = tgx возрастает на каждом из промежутков

(-p/2 + pn; p/2 + pn),

nÎz.

7. Точки экстремума и экстремумы функции:

нет.

8. x = p/2 + pn, nÎz - вертикальные асимптоты

Свойства функции у = ctgx и ее график:

К-во Просмотров: 811
Бесплатно скачать Шпаргалка: Действительные числа Иррациональные и тригонометрический уравнения