Шпаргалка: Лекции переходящие в шпоры Алгебра и геометрия
9 A=0, C=0, D=0 П: By=0 Ûy=0Û П||ОXZ, OÎ П значит П= OXZ
10 B=0, C=0, D=0 П: Ax=0 Ûx=0Û П||ОXY, OÎ П значит П= OXY
11 A¹ 0, В ¹ 0, С ¹ 0 П; - не параллельна ни одной из осей и пересекает их.
36. Уравнение плоскости проходящей через три данный точки
Даны М1(x1,y1,z1), М2(x2,y2,z2), М3(x3,y3,z3) не лежащие на одной прямой. Пусть М(x,y,z) – точка искомой плоскости.
r1={x1,y1,z1}, r2={x2,y2,z2}, r3={x3,y3,z3} и r={x,y,z} – радиус векторы данных точек.
В силу компланарности в-ров М1М=r-r1, M1M2=r2-r1, M1M3=r3-r1 их смешанное произведение = 0, т. е. радиус в-р т. М удовлетворяет условию:
(r-r1)(r2-r1)(r3-r1)=0 (10)
а ее координаты линейному уравнению:
(11)
ур-е (10) векторное, а ур-е (11) – координатные уравнения искомой плоскости.
37. Уравнение плоскости в отрезках.
Представив общее ур-е плоскости при A,B,C,D¹ 0 в виде:
и положив a= - D/A, b = -D/B, c = -D/C, получим уравнение плоскости в отрезках:
Найдем координаты точек М1, М2, М3 пересечения П с осями OX, OY, OZ
для М1 имеем
x=a, значит М1(а,0,0)
аналогично получаем:
М2(0,в,0): М3(0,0,с)
Значения а,в,с определяют величину отрезков, отсекаемых П на осях координат.
38. Расстояние от точки до плоскости
Пусть М*(x*,y*,z*) – заданная точка,
xcosa+ycosb+cosg-р=0 – заданное уравнение плоскости
расстояние от т. М* до плоскости П выч. по ф-ле:
d=d(M*, П) = |x*cosa+y*cosb+z* cosg| (13)
обозначим через d(M*, П)=r*×n0-p= x*cosa+y*cosb+z* cosg-p. Если т М* и т. О –начало координат лежат по разные стороны от П, то d>0, а если по одну сторону, то d<0, d - отклонение т. М* от плоскости П.