Шпаргалка: Лекции переходящие в шпоры Алгебра и геометрия
A1=lA2, B1=lB2
L1 ^ L2 Û n1 ^ n2Û n1×n2 =0 Û
Û A1×A2+B1×B2=0
б) прямые заданы каноническим уравнением
угол между ними равен углу между их направляющими векторами:
S1={m1,n1} S2{m2,n2} поэтому:
L1|| L2 Û S1 || S2
L1 ^ L2 Û S1 ^ S2 Û S1×S2=0 Û
m1×m2+n1×n2=0
в) прямые заданы ур-ем с угловым коэффициентом
L1:= у=к1х+в1
L2:= у=к2х+в2
за угол между прямыми принимаемся наименьший угол на который нужно повернуть прямую L1 против часовой стрелки до совмещения с прямой L2 вокруг т. пересечения прямых.
Через a1 и a2 обоз углы наклона прямых L1 и L2 к оси ОХ
Угол между прямыми j= a2- a1
tga1=k1, tga2=k2
L1|| L2 Ûa1 = a2 (j=0) Û k1=k2
L1 ^L2 Ûj=П/2
k2= -1/k1
33. Нормальное уравнение плоскости. Общее уравнение плоскости.
Зафиксировав неку т. О в пространстве положение плоскости П будет определено, если задать следующие величины: расстояние до нее от начальной т. О, т. е. длину р отрезка ОТ, перпендикуляра, опущенного из т. О на плоскость П и единичный в-р n0, |n0|=1, перпендикулярный плоскости П и направленный из начальной т. О к этой плоскости.
Когда текущая т. М движется по плоскости ее радиус в-р r меняется так, что
prn0 OM =p (1)
это соотношение вып для каждой т. принадлежащей плоскости, а для не принадлежащей – нарушается.
(1) являет уравнением этой Плоскости П