Шпаргалка: Лекции переходящие в шпоры Алгебра и геометрия
6 A¹ 0, В ¹ 0, С ¹ 0 L; - не проходит через начало координат и пересекает обе оси.
26. Уравнение прямой с угловым коэффициентом
Если общее уравнение прямой, при В ¹ 0 переписать в виде:
и приравняв:
и получим ур-е с угловым коэффициентом
у=кх+b (10), где число к = tga, a - величина угла наклона прямой к оси ОХ, угол, отсчитываемый в направлении противоположном движению часовой стрелки от положительного направления оси ОХ до данной прямой.
В случае L||ОХ, или L=OX, a=0
В случае L||ОY, или L=OY, a=П/2 и угловой коэффициент не существует.
27. Ур-е прямой, проход через данную т., с данным угловым коэфф. Ур-е прямой проход через две данные точки.
Если прямая задана т М0(х0, у0) и угловым коэффициентом к, тогда на основании ур-я (10) можно получить ур-е искомой прямой:
у-у0=к(х-х0) (11)
Ур-е прямой проходящей через две заданных точки
Зададим прямую точками М1(х1,у1) и М2(х2,у2), х1 ¹ х2. М1 и М2 принадлежат прямой, откуда следует:
у-у1=к(х-х1) для М1и у-у2=к(х-х2) для М2
откуда:
(12) Эта ф-ла позволяет вычисли ть угловой коэффициент, зная коорд двух точек.
Если у1 ¹ у2, то подставляя к из ф-лы (12) в равенство: у-у1=к(х-х1), получаем:
(13) Искомое уравнении прямой, проход через две заданных точки.
28. Расстояние от точки до прямой на плоскости
Расстоянием от т. М* до прямой L наз. длину отрезка М*N – перпендикуляра L^ опущенного из т. М* на эту прямую.
Если М*(х*, у*) – заданная точка,
а - нормальное ур-к прямой L, то расстояние от М* до L выч. по ф-ле:
d=d(M*,L)=|x*cosj+y*sinj-p| (14)
d=d(M*,L)=|rx ×n0 -p|
обозначим через d(M*,L)= rx ×n0 –p= x*cosj+y*sinj-p т. е.: d(M*,L)= |d|
по знаку d можно судить о расположении точек О и М*, относительно прямой L:
Если О и М* расположены по разные стороны относительно прямой, то d > 0 , если по одну сторону – то d<0. Величина d называется отклонением т. М* от прямой L.
Если прямая задана общим уравнением, то расстояние вычисляется по ф-ле:
29. Уравнение прямой в отрезках
Рассматривая общее ур-е прямой, при А,В,С ¹ 0, переписав его в виде: