Шпаргалка: Лекции переходящие в шпоры Алгебра и геометрия

6 A¹ 0, В ¹ 0, С ¹ 0 L; - не проходит через начало координат и пересекает обе оси.

26. Уравнение прямой с угловым коэффициентом

Если общее уравнение прямой, при В ¹ 0 переписать в виде:

и приравняв:

и получим ур-е с угловым коэффициентом

у=кх+b (10), где число к = tga, a - величина угла наклона прямой к оси ОХ, угол, отсчитываемый в направлении противоположном движению часовой стрелки от положительного направления оси ОХ до данной прямой.

В случае L||ОХ, или L=OX, a=0

В случае L||ОY, или L=OY, a=П/2 и угловой коэффициент не существует.

27. Ур-е прямой, проход через данную т., с данным угловым коэфф. Ур-е прямой проход через две данные точки.

Если прямая задана т М0(х0, у0) и угловым коэффициентом к, тогда на основании ур-я (10) можно получить ур-е искомой прямой:

у-у0=к(х-х0) (11)

Ур-е прямой проходящей через две заданных точки

Зададим прямую точками М1(х1,у1) и М2(х2,у2), х1 ¹ х2. М1 и М2 принадлежат прямой, откуда следует:

у-у1=к(х-х1) для М1и у-у2=к(х-х2) для М2

откуда:

(12) Эта ф-ла позволяет вычисли ть угловой коэффициент, зная коорд двух точек.

Если у1 ¹ у2, то подставляя к из ф-лы (12) в равенство: у-у1=к(х-х1), получаем:

(13) Искомое уравнении прямой, проход через две заданных точки.

28. Расстояние от точки до прямой на плоскости

Расстоянием от т. М* до прямой L наз. длину отрезка М*N – перпендикуляра L^ опущенного из т. М* на эту прямую.

Если М*(х*, у*) – заданная точка,

а - нормальное ур-к прямой L, то расстояние от М* до L выч. по ф-ле:

d=d(M*,L)=|x*cosj+y*sinj-p| (14)

d=d(M*,L)=|rx ×n0 -p|

обозначим через d(M*,L)= rx ×n0 –p= x*cosj+y*sinj-p т. е.: d(M*,L)= |d|

по знаку d можно судить о расположении точек О и М*, относительно прямой L:

Если О и М* расположены по разные стороны относительно прямой, то d > 0 , если по одну сторону – то d<0. Величина d называется отклонением т. М* от прямой L.

Если прямая задана общим уравнением, то расстояние вычисляется по ф-ле:

29. Уравнение прямой в отрезках

Рассматривая общее ур-е прямой, при А,В,С ¹ 0, переписав его в виде:

К-во Просмотров: 530
Бесплатно скачать Шпаргалка: Лекции переходящие в шпоры Алгебра и геометрия