Шпаргалка: Основы гидрогазодинамики
В стационарных задачах линии тока и траектории совпадают, т.к. нормальная составляющая скорости к линии тока равна нулю, жидкость через линию тока не перетекает. В плоских течениях количество жидкости между двумя линиями тока в любых сечениях будет одинаково. Если линии тока приближаются, то скорость потока увеличивается, и наоборот. Через каждую точку в потоке можно провести только одну линию тока, исключение составляют особые точки: критические точки. А и В – это критические точки. Поверхность непроницаемого тела – поверхность тока, а линии тока, расположенные на поверхности называется нулевыми линиями тока.
Если в жидкости провести замкнутый контур и через каждую точку провести линию тока, получим поверхность тока. Жидкость внутри поверхности называется трубкой тока. Через поверхность тока жидкость не перетекает, следовательно через каждое сечение трубки тока проходит одно и то же количество жидкости. Если через каждую точку контура провести траекторию, то часть жидкости, которая ограничена поверхностью траектории называется струей. Струя совпадает с трубкой тока в стационарном течении.
4. Градиент, дивергенция, циркуляция, вихрь
1. Градиент.
Рассмотрим действие векторного оператора Гамильтона на скалярную функцию φ. Скалярная величина – это параметр, которому нельзя придать направление.
Градиент скалярной функции – это вектор направленный по нормали к линии постоянного значения в сторону возрастания функции и модуль его равен частной производной от функции по направлению указанной нормали.
2. Дивергенция.
Рассмотрим скалярное умножение векторного оператора и двух величин скорости:
Дивергенция является скалярной величиной, показывает расхождение вектора скорости, определяет закон относительного изменения объема. Например, если течение стационарное и жидкость несжимаемая, то при в жидкости отсутствуют источники или стоки. При имеется источник, при имеется сток. Уравнение часто используется для замыкания системы уравнений движения несжимаемой жидкости и является уравнением сплошности.
3. Циркуляция.
Характеризует интенсивность вращательного движения жидкости.
Вычисляется, например, по контуру АВ:
- элемент контура АВ
4. Вихрь вектора скорости.
Рассмотрим векторное произведение оператора на вектор скорости:
Рассмотрим вращение точки вокруг оси, проходящей через начало координат с угловой скоростью .